Modélisation et analyse des systèmes dynamiques

G. Bastin

14 juillet 2013

 \bigcirc G. Bastin 2013. Si vous êtes intéressé, vous pouvez copier ce document pour un usage strictement personnel et non commercial.

2

Table des matières

Syst	èmes dynamiques et modèles d'état	7
1.1	Définition et exemples	7
1.2	Terminologie et notations	14
1.3	Modélisation et analyse	17
1.4	Exercices	19
Syst	èmes mécaniques articulés	21
2.1	Dynamique d'un corps rigide dans le plan	21
2.2	Dynamique des systèmes mécaniques articulés	25
2.3	Propriétés de la matrice d'inertie	31
2.4	Articulations élastiques	31
2.5	Frottement	34
2.6	Energie et équation d'Euler-Lagrange	35
2.7	Systèmes non-holonomes	36
2.8	Exercices	37
Syst	èmes électriques et électromécaniques	43
Syst 3.1	èmes électriques et électromécaniques Les réseaux électriques	43 43
Syst 3.1 3.2	èmes électriques et électromécaniques Les réseaux électriques	43 43 47
Syst 3.1 3.2 3.3	èmes électriques et électromécaniques Les réseaux électriques	43 43 47 49
Syst 3.1 3.2 3.3 3.4	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes	43 43 47 49 53
Syst 3.1 3.2 3.3 3.4 3.5	èmes électriques et électromécaniques Les réseaux électriques	43 47 49 53 56
Syst 3.1 3.2 3.3 3.4 3.5 3.6	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes Les machines à courant continu Exercices	43 43 47 49 53 56 60
Syst 3.1 3.2 3.3 3.4 3.5 3.6 Syst	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes Les machines à courant continu Exercices Les à compartiments	 43 43 47 49 53 56 60 67
Syst 3.1 3.2 3.3 3.4 3.5 3.6 Syst 4.1	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes Les machines à courant continu Exercices Les à compartiments Définitions et notations	 43 43 47 49 53 56 60 67 67
Syst 3.1 3.2 3.3 3.4 3.5 3.6 Syst 4.1 4.2	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes Les machines à courant continu Exercices Les à compartiments Définitions et notations Modèle d'état	 43 43 47 49 53 56 60 67 67 69
Syst 3.1 3.2 3.3 3.4 3.5 3.6 Syst 4.1 4.2 4.3	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes Les machines à courant continu Exercices Définitions et notations Modèle d'état Modélisation des flux	 43 43 47 49 53 56 60 67 67 69 70
Syst 3.1 3.2 3.3 3.4 3.5 3.6 Syst 4.1 4.2 4.3 4.4	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes Les machines à courant continu Exercices Les à compartiments Définitions et notations Modèle d'état Modèles linéaires avec commande par les alimentations extérieures	 43 43 47 49 53 56 60 67 67 69 70 73
Syst 3.1 3.2 3.3 3.4 3.5 3.6 Syst 4.1 4.2 4.3 4.4 4.5	èmes électriques et électromécaniques Les réseaux électriques Mise en équations du modèle d'état d'un réseau électrique Les systèmes électromécaniques Les machines électriques tournantes Les machines à courant continu Exercices Définitions et notations Modèle d'état Modèles linéaires avec commande par les alimentations extérieures	 43 43 47 49 53 56 60 67 67 69 70 73 75
	Syst 1.1 1.2 1.3 1.4 Syst 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Systèmes dynamiques et modèles d'état 1.1 Définition et exemples 1.2 Terminologie et notations 1.3 Modélisation et analyse 1.4 Exercices Systèmes mécaniques articulés 2.1 Dynamique d'un corps rigide dans le plan 2.2 Dynamique des systèmes mécaniques articulés 2.3 Propriétés de la matrice d'inertie 2.4 Articulations élastiques 2.5 Frottement 2.6 Energie et équation d'Euler-Lagrange 2.7 Systèmes non-holonomes 2.8 Exercices

5	Svst	èmes r	réactionnels	85
	5.1	Réseau	ux réactionnels	85
	5.2	Modèl	e d'état des systèmes réactionnels	88
	5.3	Modél	isation des cinétiques de réactions	90
	5.4	l es réa	acteurs parfaitement mélangés	92
	•••	541	Réacteurs continus	92
		542	Réacteurs à volume variable	94
		543	Réacteurs non-isothermes	95
	55	l es sv	stèmes écologiques	97
	5.6	Ecology		102
	0.0			
6	Trai	nsforma	ations d'état	109
	6.1	Schém	1a fonctionnel	109
	6.2	Graph	e d'un système dynamique	111
	6.3	Transf	ormations linéaires d'état	112
	6.4	Transf	ormations non linéaires d'état	118
	6.5	Systèn	nes mécaniques	120
	6.6	Machi	nes électriques	124
	6.7	Systèn	nes triangulaires	124
	6.8	Forme	canonique de Brunovski	126
	6.9	Exerci	ces	130
7	Egu	ilibres (et invariants	133
	7.1	Equilit	pres : définition et exemples	133
	7.2	Équilit	pres des systèmes linéaires	138
	7.3	Invaria	ants	140
	7.4	Exerci	ces	142
0	C. vet	àmas r		147
0	0 1	ernes p	Jians	147
	0.1 Q Q	Systen	nes infedires plans	147
	0.2	0 0 1		154
		0.2.1	Les systemes mecaniques à un dègre de liberte	155
		0.2.2	Les circuits électriques REC	157
		0.2.3	Les systèmes à deux compartiments	161
	0.2	0.2.4 Tuslas	Les systèmes reactionnels à deux espèces	101
	8.3	I rajec	toires periodiques et cycles limites	103
	8.4	Bifurca		171
		8.4.1	Biturcation de Hopt	170
		8.4.2	Biturcation transcritique	1/3
		8.4.3	Biturcation col-noeud	1/4
		8.4.4	Biturcation tourche	175
		8.4.5	Généralisations	176

4

	8.5	Exercices	177
9	Stab	ilité des équilibres	181
	9.1	Définitions	181
	9.2	Première méthode de Lyapunov (méthode indirecte)	183
	9.3	Seconde méthode de Lyapunov (méthode directe)	183
	9.4	Bassin d'attraction et convergence globale	188
	9.5	L'énergie comme fonction de Lyapunov	188
	9.6	Systèmes linéaires	189
	9.7	Stabilité « Entrée bornée - Etat borné »	190
	9.8	Exercices	192
10	Com	imandabilité et planification de trajectoires	197
10	Com 10.1	imandabilité et planification de trajectoires Définitions	197 197
10	Com 10.1 10.2	Imandabilité et planification de trajectoires Définitions	197 197 198
10	Com 10.1 10.2 10.3	Imandabilité et planification de trajectoires Définitions Commandabilité : systèmes linéaires Commandabilité : systèmes non-linéaires	197 197 198 199
10	Com 10.1 10.2 10.3 10.4	Immandabilité et planification de trajectoires Définitions Commandabilité : systèmes linéaires Commandabilité : systèmes non-linéaires Planification de trajectoires	197 197 198 199 204
10	Com 10.1 10.2 10.3 10.4	Imandabilité et planification de trajectoiresDéfinitionsCommandabilité : systèmes linéairesCommandabilité : systèmes non-linéairesPlanification de trajectoires10.4.1Systèmes mono-entrée sous forme de Brunovski	197 197 198 199 204 204
10	Com 10.1 10.2 10.3 10.4	Imandabilité et planification de trajectoiresDéfinitionsCommandabilité : systèmes linéairesCommandabilité : systèmes non-linéairesPlanification de trajectoires10.4.1Systèmes mono-entrée sous forme de Brunovski10.4.2Systèmes linéaires multi-entrées	197 198 199 204 204 207
10	Com 10.1 10.2 10.3 10.4	Imandabilité et planification de trajectoiresDéfinitionsCommandabilité : systèmes linéairesCommandabilité : systèmes non-linéairesPlanification de trajectoires10.4.1Systèmes mono-entrée sous forme de Brunovski10.4.2Systèmes linéaires multi-entrées10.4.3Sorties de Brunovski	 197 198 199 204 204 207 208
10	Com 10.1 10.2 10.3 10.4	Imandabilité et planification de trajectoiresDéfinitionsCommandabilité : systèmes linéairesCommandabilité : systèmes non-linéairesPlanification de trajectoires10.4.1Systèmes mono-entrée sous forme de Brunovski10.4.2Systèmes linéaires multi-entrées10.4.3Sorties de Brunovski10.4.4Systèmes non-linéaires multi-entrées	 197 198 199 204 204 207 208 208
10	Com 10.1 10.2 10.3 10.4	Imandabilité et planification de trajectoiresDéfinitionsCommandabilité : systèmes linéairesCommandabilité : systèmes non-linéairesPlanification de trajectoires10.4.1Systèmes mono-entrée sous forme de Brunovski10.4.2Systèmes linéaires multi-entrées10.4.3Sorties de Brunovski10.4.4Systèmes non-linéaires multi-entréesAnnexe : formules de géométrie différentielle	 197 197 198 199 204 204 204 207 208 208 212

Chapitre 1

Systèmes dynamiques et modèles d'état

Dans ce premier chapitre nous donnons tout d'abord la définition de la classe des systèmes dynamiques qui est étudiée dans le livre, ainsi que la terminologie et les notations utilisées, et nous l'illustrons avec divers exemples relevant des sciences de l'ingénieur. Nous expliquons ensuite ce que recouvrent les notions de modélisation et d'analyse des systèmes dynamiques. Le chapitre se termine par une description succincte du contenu des neufs autres chapitres qui constituent le livre.

1.1. Définition et exemples

Dans ce livre, nous étudierons des systèmes dynamiques décrits par des ensembles d'équations différentielles du premier ordre de la forme

$$\dot{x}_{1} = f_{1}(x_{1}, x_{2}, \dots, x_{n}, u_{1}, u_{2}, \dots, u_{m}),
\dot{x}_{2} = f_{2}(x_{1}, x_{2}, \dots, x_{n}, u_{1}, u_{2}, \dots, u_{m}),
\vdots : : (1.1)
\dot{x}_{n} = f_{n}(x_{1}, x_{2}, \dots, x_{n}, u_{1}, u_{2}, \dots, u_{m}),$$

où les f_i sont des applications de \mathbb{R}^{n+m} dans \mathbb{R} tandis que les x_i et u_i sont des fonctions scalaires du *temps t*, qui est une variable indépendante. La quantité \dot{x}_i représente la dérivée de la variable x_i par rapport au temps t. Les variables x_1, x_2, \ldots, x_n sont appelées variables d'état et contiennent toute l'information nécessaire sur l'état du système à l'instant présent pour pouvoir calculer l'évolution de celui-ci dans le futur, au moyen des équations (1.1), étant données les valeurs futures des variables u_1, u_2, \ldots, u_m . Celles-ci, appelées *entrées* du système, représentent l'influence de l'environnement extérieur sur le système étudié. On écrit

FIGURE 1.1 – Four de verrerie

souvent, de manière condensée,

$$\dot{x} = f(x, u) \tag{1.2}$$

où f est une application de \mathbb{R}^{n+m} dans \mathbb{R}^n tandis que x et u sont des fonctions vectorielles du temps.

Un tel système d'équations est appelé *modèle d'état*. L'objet de ce livre est de traiter la *modélisation*, c'est à dire l'obtention de telles équations dans diverses applications des sciences de l'ingénieur, et *l'analyse*, c'est à dire la détermination des propriétés principales de ces systèmes, déduites des équations. Nous commençons par quelques exemples pour illustrer notre propos.

Exemple 1.1. Un four de verrerie

Le premier exemple est un procédé industriel, illustré schématiquement à la figure 1.1. Il s'agit d'un four dont les parois sont construites en matériau réfractaire et dans lequel on fait fondre un mélange de sable, de chaux et d'autres additifs pour obtenir du verre. Cette fusion est obtenue par un apport énergétique à l'intérieur du four, provenant par exemple de brûleurs à gaz disposés au dessus du bain de verre. Le verre fondu est extrait du four de manière continue pour alimenter les machines en aval. En faisant l'hypothèse que la température du verre est homogène dans le four et que celui-ci est parfaitement isolé, nous pouvons écrire les deux équations suivantes, correspondant à un bilan massique et à un bilan énergétique du procédé. Nous écrivons donc que la variation de masse ou d'énergie, par unité de temps, dans le système considéré est égale à la somme de ce qui rentre dans le système, en termes de masse et de chaleur, diminuée ce qui en sort, toujours durant la même

1.1. Définition et exemples

unité de temps :

$$\frac{dM}{dt} = P_{in} - P_{out},$$

$$\frac{d}{dt}(CTM) = Q_{in} + C_{in}T_{in}P_{in} - CTP_{out},$$
(1.3)

avec la signification suivante des variables et paramètres du modèle :

 $\begin{array}{l} M: {\rm masse \ du \ verre \ en \ fusion \ dans \ le \ four \ (kg), } \\ T: {\rm température \ du \ verre \ en \ fusion \ dans \ le \ four \ (K), } \\ T_{in}: {\rm température \ du \ verre \ en \ fusion \ dans \ le \ four \ (K), } \\ C: {\rm chaleur \ spécifique \ du \ verre \ (J/K \times kg), } \\ C_{in}: {\rm chaleur \ spécifique \ du \ verre \ (J/K \times kg), } \\ Q_{in}: {\rm quantité \ de \ chaleur \ fournie \ par \ unité \ de \ temps \ (J/s), } \\ P_{in}: {\rm masse \ enfournée \ par \ unité \ de \ temps \ (kg/s), } \\ P_{out}: {\rm masse \ \ll \ tirée \ \gg \ par \ unité \ de \ temps \ (kg/s). } \end{array}$

Nous avons indiqué des unités pour chacune des grandeurs définies ci-dessus. La cohérence dimensionnelle des équations est la première vérification à effectuer dans un exercice de mise en équation d'un modèle mathématique.

Pour mettre le système d'équations (1.3) sous la forme d'un modèle d'état (1.1), on définit les variables d'état :

 $x_1 \triangleq M$: masse du verre en fusion (kg), $x_2 \triangleq CT$: quantité de chaleur par unité de masse de verre en fusion (J/kg),

et les variables d'entrée :

 $u_1 \triangleq P_{in}$: masse enfournée par unité de temps (kg/s), $u_2 \triangleq P_{out}$: masse tirée par unité de temps (kg/s), $u_3 \triangleq Q_{in}$: chaleur fournie par unité de temps (J/s).

On obtient alors le modèle d'état :

$$\dot{x}_1 = u_1 - u_2,$$

$$\dot{x}_2 = \frac{u_1(\alpha - x_2) + u_3}{x_1},$$
(1.4)

où le paramètre constant $\alpha = C_{in}T_{in}$ est la quantité de chaleur de la matière enfournée par unité de masse.

On note que d'autres choix des variables d'état et des variables d'entrée sont possibles (voir exercice 1.2).

FIGURE 1.2 – Réacteur chimique

Exemple 1.2. Un réacteur chimique

Dans un réacteur chimique (Figure 1.2), une réaction transformant un réactif A en un produit B se déroule en phase liquide à une certaine température T. Le réacteur est alimenté en réactif A via une vanne d'alimentation qui introduit le réactif à la concentration A_{in} avec un débit volumique d'alimentation variable q_{in} qui est une fonction monotone croissante de l'ouverture de vanne $w: q_{in} = \phi(w)$. Le contenu du réacteur est extrait par une pompe avec un débit de soutirage q_{out} . On suppose que la réaction est endothermique et nécessite dès lors un apport calorifique W fourni par une résistance chauffante R_0 alimentée par une source de courant variable I comme illustré sur la figure. On suppose en outre que le réacteur est parfaitement mélangé. La réaction (c.à.d. la transformation du réactif A en produit B) se passe avec une vitesse de réaction qui obéit à une cinétique du premier ordre, c.à.d. proportionnellement à la quantité de réactif A dans le réacteur. Le coefficient de proportionnalité est fonction de la température et vérifie la loi d'Arrhenius, $k(T) = k_0 \exp(-\frac{E}{RT})$.

On décrit l'évolution de ce système en écrivant les équations de bilan volumé-

trique, massique et thermique :

$$\begin{split} &\frac{dV}{dt} = q_{in} - q_{out}, \\ &\frac{d}{dt}(AV) = q_{in}A_{in} - q_{out}A - k(T)AV, \\ &\frac{d}{dt}(BV) = -q_{out}B + k(T)AV, \\ &\frac{d}{dt}(CTV) = CT_{in}q_{in} - CTq_{out} - hk(T)AV + R_0I^2, \end{split}$$

avec :

- V : volume de liquide dans le réacteur,
- A : concentration en réactif A dans le réacteur,
- B : concentration en produit B dans le réacteur,
- k_0 : constante de vitesse de réaction,
- E : énergie d'activation,
- R : constante de Boltzmann,
- C : chaleur spécifique,
- h : enthalpie de réaction.

Les autres notations ont été définies plus haut. En définissant les variables d'état

 $\boldsymbol{x}_1 = \boldsymbol{A}$: concentration en réactif dans le réacteur,

- $x_2 = B$: concentration en produit dans le réacteur,
- $x_3 = V$: volume du milieu réactionnel,
- $x_4 = T$: température du milieu réactionnel,

et les variables d'entrée

 $u_1 = w$: ouverture de vanne,

 $u_2 = q_{out}$: débit de soutirage,

 $u_3 = I$: courant électrique fourni à la résistance chauffante,

on obtient le modèle d'état suivant :

$$\dot{x}_{1} = \phi(u_{1}) \frac{A_{in} - x_{1}}{x_{3}} - k(x_{4})x_{1},$$

$$\dot{x}_{2} = -\phi(u_{1}) \frac{x_{2}}{x_{3}} + k(x_{4})x_{1},$$

$$\dot{x}_{3} = \phi(u_{1}) - u_{2},$$

$$\dot{x}_{4} = \frac{1}{x_{3}} [\phi(u_{1})(T_{in} - x_{4}) + \frac{R_{0}}{C} u_{3}^{2}] - \frac{h}{C} k(x_{4})x_{1}$$

Les réacteurs *continus* et *isothermes* constituent un cas particulier intéressant. Il s'agit de réacteurs pour lesquels le volume V et la température T sont maintenus constants par des dispositifs de régulation adéquats. Le modèle d'état est alors réduit aux deux premières équations du modèle ci-dessus :

$$\dot{x}_{1} = \frac{\phi(u_{1})}{V} (A_{in} - x_{1}) - k(T)x_{1},$$

$$\dot{x}_{2} = -\frac{\phi(u_{1})}{V}x_{2} + k(T)x_{1}.$$
(1.5)

Exemple 1.3. Des coccinelles et des pucerons

Les pucerons sont des insectes ravageurs permanents et redoutables pour les cultures de rosiers. La lutte biologique contre ces ravageurs est une alternative aux traitements par pesticides qui sont de moins en moins efficaces devant les résistances développées par les pucerons. Les coccinelles *Harmonia axyridis* (Fig. 1.3)

FIGURE 1.3 – Harmonia axyridis

sont utilisées dans cette lutte biologique car elles se nourissent de pucerons avec une grande voracité. Elles sont actives dès le printemps, c'est-à-dire dès l'apparition des colonies de pucerons dans les roseraies. Pour augmenter l'efficacité prédatrice des coccinelles, l'Institut Français de Recherche Agronomique (INRA) a développé une variété de coccinelles « sédentaires » qui ne volent pas (et ne risquent donc pas de quitter la culture à traîter).

On souhaite établir un modèle décrivant l'évolution du nombre de pucerons $x_1(t)$ et de coccinelles $x_2(t)$ sous les hypothèses suivantes :

- en l'absence de coccinelles, la population de pucerons dispose d'assez de nourriture (les feuilles des rosiers) pour avoir une croissance exponentielle avec un taux spécifique de croissance constant;
- 2. les coccinelles dévorent d'autant plus de pucerons qu'ils sont nombreux;
- la prédation par les coccinelles est la seule source de mortalité naturelle des pucerons;
- 4. les coccinelles ont un taux spécifique constant de mortalité naturelle;

1.1. Définition et exemples

5. le jardinier, qui n'est pas très futé, répand un pesticide qui tue indifféremment les pucerons et les coccinelles avec un taux d'épandage variable noté u(t).

Le modèle d'état suivant exprime le bilan du nombre de pucerons et de coccinelles :

$$\dot{x}_1 = ax_1 - bx_1x_2 - cux_1, \dot{x}_2 = dx_1x_2 - ex_2 - fux_2.$$
(1.6)

où a, b, c, d, e, f sont des constantes positives. On peut vérifier que chaque terme de ce modèle formalise une des hypothèses ci-dessus. Cette vérification est laissée comme exercice.

Ce type de modèle fut introduit à l'origine par le mathématicien italien V. Volterra qui cherchait à comprendre les fluctuations du rendement de la pêche en mer Adriatique au début du vingtième siècle. Evidemment, il s'agit d'une simplification assez grossière de la réalité. Le modèle ne prend pas en compte de nombreux facteurs qui peuvent influencer l'évolution des populations (conditions climatiques, autres ressources disponibles, autres prédateurs, migration des populations etc ...). Comme l'illustre notre exemple, une application importante de ce type de modèle est la lutte contre les insectes nuisibles dans l'agriculture. Il arrive souvent que la population nuisible soit contrôlée par l'introduction de prédateurs. Le modèle constitue alors un outil intéressant pour la conception des programmes d'intervention sur le terrain.

Exemple 1.4. Un moteur à courant continu

Nous examinons maintenant le dispositif électromécanique illustré à la figure 1.4. Il s'agit d'un moteur à courant continu qui peut être aussi bien commandé

FIGURE 1.4 – Moteur à courant continu

par la tension statorique (ou tension d'excitation) e que par le courant rotorique I. L'équation électrique du circuit statorique est donnée par

$$e = Ri + L\frac{di}{dt}$$

où R et L représentent la résistance et l'inductance du circuit, e est la tension de commande et i est le courant. Le couple exercé sur le rotor est donné par $C = \Phi I$ où I est le courant rotorique et Φ est le flux magnétique proportionnel au courant d'excitation : $\Phi = Ki$. On obtient donc

$$C = KiI.$$

Il reste à modéliser la partie mécanique de ce système. En notant θ la position angulaire du rotor, J son moment d'inertie et F le coefficient de frottement visqueux, l'application de la loi de Newton conduit à :

$$J\frac{d^2\theta}{dt^2} + F\frac{d\theta}{dt} = C.$$

En définissant comme variables d'état $x_1 = \theta, x_2 = \dot{\theta}, x_3 = i$, et comme entrées $u_1 = e, u_2 = I$, on obtient le modèle d'état suivant :

$$\dot{x}_3 = -\frac{R}{L}x_3 + \frac{1}{L}u_1.$$

Les quatre exemples que nous venons de traiter ont pour but de montrer que l'équation (1.2) permet effectivement de construire des modèles de systèmes dynamiques dans des domaines variés d'application des sciences de l'ingénieur puisque nous avons traité successivement des exemples relevant de la thermodynamique, du génie chimique, de l'écologie et de l'électrotechnique. Ils permettront aussi de mieux appréhender la terminologie qui est présentée dans la section suivante.

1.2. Terminologie et notations

Comme les exemples précédents l'ont illustré, nous étudions des *systèmes dynamiques* dont le comportement est décrit par un *modèle d'état* formé d'un ensemble d'équations différentielles écrites sous forme condensée :

$$\dot{x} = f(x, u). \tag{1.8}$$

On considère ce modèle d'état à partir d'un instant initial noté t_0 . L'état $x \in \mathbb{R}^n$ et l'entrée $u \in \mathbb{R}^m$ sont des fonctions vectorielles du temps que l'on notera parfois x(t) et u(t). Cependant l'argument t sera souvent omis sans risque de confusion.

Pour un système donné, l'entrée u(t) est a priori une fonction quelconque du temps. On supposera cependant toujours qu'il s'agit d'une fonction *continue par*

1.2. Terminologie et notations

morceaux et bornée : $u(t) \in \mathcal{U}$ où \mathcal{U} désigne un ensemble de fonctions continues par morceaux et bornées de \mathbb{R} dans \mathbb{R}^m .

Pour une valeur donnée de l'état initial $x(t_0) = x_0$ et pour une entrée u(t)donnée, la solution x(t) $t \ge t_0$ du système différentiel (1.8) est appelée *trajectoire* du système. Parfois, quand ce sera nécessaire pour la clarté de l'exposé, la trajectoire sera notée $x(t, x_0, u)$. Nous supposerons toujours qu'une telle trajectoire existe à tout instant $t \ge t_0$, est unique et est une fonction continue du temps. Graphiquement, une trajectoire peut donc être visualisée par une courbe continue dans l'espace \mathbb{R}^{n+1} . La projection de la trajectoire dans *l'espace d'état* \mathbb{R}^n (on dit aussi *espace de phase*) est appelée une *orbite* du système.

Lorsque l'entrée u(t) peut être choisie librement dans \mathcal{U} , on dit que le système $\dot{x} = f(x, u)$ est un système *forcé* ou encore un système *commandé*. Le qualificatif *forcé* est utilisé pour signifier qu'au départ d'un état initial x_0 , l'allure de la trajectoire est en quelque sorte forcée par le choix que l'on a fait d'une entrée u(t). De même, dans un contexte d'automatique, le qualificatif *commandé* signifie que l'état du système peut être piloté dans l'espace d'état par une manipulation appropriée de l'entrée u(t).

Nous serons cependant souvent amenés, dans les chapitres suivants, à nous intéresser à la solution de l'équation $\dot{x} = f(x, u)$ lorsque l'entrée est en réalité une constante fixée a priori : $u(t) = \bar{u} \quad \forall t \ge t_0$. Dans ce cas, on écrit le modèle d'état sous la forme $\dot{x} = f(x, \bar{u})$. Parfois on écrit aussi

$$\dot{x} = f_{\bar{u}}(x)$$

pour exprimer plus clairement que f est une fonction de x seulement, paramétrée par la constante \bar{u} . Dans un tel cas, il n'y a évidemment qu'une seule trajectoire possible évoluant librement au départ d'un état initial x_0 . En fixant d'avance l'entrée à une valeur constante, on se prive de la possibilité de piloter les trajectoires du système et on dit que le système est *libre* (on dit aussi système *autonome* ou système *stationnaire*). La trajectoire est parfois appelée réponse libre du système.

Lorsque l'on s'intéresse à la solution de l'équation $\dot{x} = f(x, u)$ pour *une* entrée u(t) variant au cours du temps mais particulière (par exemple une sinusoide), on peut tout aussi bien oublier que l'on a sélectionné cette entrée dans \mathcal{U} et écrire tout simplement :

$$\dot{x} = f(x, t)$$

Un système dynamique représenté de cette manière est appelé système *non autonome* ou *instationnaire*.

Nous serons parfois amenés à considérer divers cas particuliers du modèle d'état général (1.8). On distinguera notamment :

Les systèmes affines en l'entrée

$$\dot{x} = f(x) + \sum_{i=1}^{m} u_i g_i(x) \triangleq f(x) + G(x)u$$

où f et les g_i sont des applications de \mathbb{R}^n dans \mathbb{R}^n . Le modèle d'état (1.4) d'un four de verrerie est de cette forme avec les définitions suivantes :

$$f(x) = 0,$$
 $G(x) = \begin{pmatrix} 1 & -1 & 0 \\ (\alpha - x_2)/x_1 & 0 & 1/x_1 \end{pmatrix}.$

Les systèmes affines en l'état

$$\dot{x} = \sum_{i=1}^{m} x_i a_i(u) + b(u) \triangleq A(u)x + b(u)$$

où b et les a_i sont des applications de \mathbb{R}^m dans \mathbb{R}^n . Le modèle d'état d'un réacteur chimique continu isotherme (1.5) est de cette forme avec les définitions suivantes :

$$A(u) = \begin{pmatrix} -\left(\frac{\phi(u_1)}{V} + k(T)\right) & 0\\ k(T) & -\frac{\phi(u_1)}{V} \end{pmatrix},$$
$$b(u) = \begin{pmatrix} \frac{\phi(u_1)A_{in}}{V}\\ 0 \end{pmatrix}.$$

Les systèmes bilinéaires

Ce sont des systèmes affines à la fois en l'état et en l'entrée

$$\dot{x} = \left(A_0 + \sum_{i=1}^m u_i A_i\right) x + B_0 u, \\ = A_0 x + (B_0 + \sum_{i=1}^n x_i B_i) u,$$

où les A_i (i = 0, ..., m) sont des matrices de dimension $(n \times n)$ et les B_i (i = 0, ..., n) sont des matrices de dimension $(n \times m)$. Le modèle d'état d'un moteur

1.3. Modélisation et analyse

à courant continu (1.7) est de cette forme avec les définitions suivantes :

$$A_{0} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -\frac{B}{J} & 0 \\ 0 & 0 & -\frac{R}{L} \end{pmatrix} \quad A_{1} = 0$$
$$A_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{K}{J} \\ 0 & 0 & 0 \end{pmatrix} \qquad B_{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{1}{L} & 0 \end{pmatrix}$$

Les systèmes linéaires

$$\dot{x} = Ax + Bu$$

où A est une matrice de dimension $(n \times n)$ et B est une matrice de dimension $(n \times m)$. Si on considère le modèle d'état du moteur à courant continu en supposant que la source de courant rotorique est constante (I = constante), on obtient un exemple de système linéaire avec

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -\frac{B}{J} & \frac{KI}{J} \\ 0 & 0 & -\frac{R}{L} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{1}{L} & 0 \end{pmatrix}.$$

1.3. Modélisation et analyse

Un système dynamique, tel que nous le concevons dans ce livre, est donc une partie de la réalité *concrète* qui nous semble pertinente dans un problème d'ingénierie et que nous choisissons d'isoler par la pensée pour en décrire le comportement en termes mathématiques à l'aide d'un modèle. Nous sommes intéressés en particulier à caractériser quantitativement l'évolution, au cours du temps, de l'*état* de ce système. Nous utilisons pour cela des modèles d'état *déterministes à paramètres localisés* qui sont formés d'équations différentielles ordinaires.

D'autres démarches de modélisation des systèmes dynamiques sont toutefois possibles. Pour les différents exemples décrits dans la section 1.1 nous aurions pu tout aussi bien construire des modèles d'état déterministes à paramètres distribués constitués d'équations aux dérivées partielles. C'est ainsi que dans l'exemple du four de verrerie, nous avons fait l'hypothèse que la température est homogène

dans l'ensemble du bain de verre. C'est un point de vue simplificateur mais très utile pour construire des modèles simples et efficaces en vue par exemple de la régulation et de l'optimisation du comportement dynamique du four. Toutefois, si cette hypothèse n'est pas retenue et que l'on souhaite étudier les variations spatiales de la température, on pourra développer un modèle d'état formé d'équations aux dérivées partielles décrivant l'évolution au cours du temps des champs de température et de vitesse du fluide dans le bain de verre en fusion. Aucun des deux modèles n'est meilleur que l'autre. Il s'agit simplement de modèles différents obtenus en vue d'objectifs différents, correspondant le plus souvent à des échelles spatiales et temporelles différentes.

L'interaction entre le système et le « monde extérieur » est représentée par les entrées $u_i(t)$ du modèle qui sont, comme nous l'avons indiqué plus haut, des fonctions du temps, réelles et déterministes. Dans la réalité, un système donné est souvent soumis à des influences aléatoires que l'on peut représenter en introduisant des entrées *stochastiques*, c'est-à-dire des fonctions $u_i(t)$ aléatoires (aussi appelées processus stochastiques). On obtient alors des modèles d'état stochastiques dont les variables d'état sont elles mêmes des fonctions aléatoires et dont l'étude fait appel à des techniques mathématiques différentes de celles mises en oeuvre dans ce livre.

Le modèle d'état d'un système dynamique est donc une représentation mathématique simplifiée du comportement du système. Pourtant, lorsque cela ne nuira pas à la clarté de l'argumentation, il nous arrivera souvent de confondre les deux notions et de les considérer comme des synonymes dans le but d'alléger l'exposé. On parlera alors du système dynamique $\dot{x} = f(x, u)$ en signifiant par là que l'on parle en réalité d'un modèle d'état déterministe de ce système.

La modélisation d'un système dynamique, telle que nous la concevons dans ce livre, c'est donc l'exercice qui vise, au départ d'une description discursive et qualitative du système, à en établir une description mathématique quantitative sous la forme d'un modèle d'état. Sans être inutilement compliqué, le modèle ainsi obtenu doit être un outil efficace pour la résolution du problème d'ingénierie posé pour le système considéré. Les hypothèses adoptées pour la modélisation doivent être clairement formulées et mises en évidence.

Dans la première partie du livre, nous allons montrer comment la démarche de modélisation peut être systématisée pour différentes classes de systèmes relevant de l'ingénierie. Nous aborderons successivement les systèmes mécaniques, les systèmes électriques et électromécaniques, les systèmes à compartiments et les systèmes réactionnels dans les chapitres 2 à 5. Dans chaque cas, nous décrirons les principes physiques de base et la manière dont ceux-ci sont mis en oeuvre pour obtenir des modèles d'état. Dans le chapitre 6, nous verrons comment définir et utiliser des *transformations d'état* pour obtenir des modèles équivalents d'un système donné.

Il n'entre cependant pas dans nos intentions de décrire et de justifier en détail l'ensemble des principes physiques des différentes disciplines qui constituent l'art de

1.4. Exercices

l'ingénieur. Dans des cas de modélisation plus complexes que ceux abordés dans ce livre, le lecteur se référera utilement aux ouvrages spécialisés des disciplines concernées. Nous espérons cependant que le caractère unificateur du concept de modèle d'état dans les sciences de l'ingénieur sera clairement perçu.

Une fois le modèle obtenu, on peut en analyser les propriétés et en tirer un certain nombre d'enseignements, soit sur la pertinence du modèle lui-même, soit sur les propriétés du système dynamique qui fait l'objet de la modélisation. C'est à cette analyse que la deuxième partie du livre est consacrée.

Dans les chapitres 7, 8 et 9 on étudie le comportement des systèmes dynamiques libres dont les entrées sont *constantes* : $\dot{x} = f(x, \bar{u})$. Au chapitre 7 on examine tout d'abord les conditions d'existence d'états d'équilibre et de sous ensembles invariants dans l'espace d'état. Le chapitre 8 est consacré à l'étude des systèmes *plans* c'està-dire des sytèmes dont le vecteur d'état est de dimension 2. On y examine en particulier le comportement du système au voisinage des états d'équilibre, ainsi que les trajectoires périodiques et les bifurcations. L'objectif du chapitre 9 est d'analyser la stabilité des états d'équilibre par la méthode de Lyapunov et de caractériser les bassins d'attraction.

Enfin, dans le chapitre 10, on s'intéresse à la question de la commandabilité des systèmes dynamiques qui peut être formulée comme suit : pour un système dynamique forcé $\dot{x} = f(x, u)$, sous quelles conditions et comment peut on déterminer des fonctions d'entrée $u_i(t)$ permettant de conduire le système d'un état initial x_0 à un état final x_f donnés, en un temps prescrit. La réponse à cette question a évidemment des implications importantes dans de nombreux problèmes d'ingénierie comme par exemple le pilotage des engins électro-mécaniques ou la conduite des procédés industriels.

1.4. Exercices

Exercice 1.1. Un four de verrerie

Pour le four de verrerie qui a été décrit dans ce chapitre :

- 1. Etablir un modèle d'état dont les variables d'état sont la masse M et la chaleur emmagasinée $C_T M$.
- 2. Etablir un modèle d'état dont les variables d'état sont la température T et la chaleur emmagasinée $C_T M$.
- 3. Indiquer comment modifier le modèle d'état pour tenir compte de pertes de chaleur vers l'extérieur à travers les parois du four.
- 4. Le modèle d'état a été construit sous l'hypothèse implicite d'une fusion quasiinstantanée de la matière première. Imaginer comment modifier simplement le modèle pour y inclure explicitement le fusion (indication : découper le four en deux compartiments de masse variable, l'un contenant la matière non encore fondue et l'autre contenant la matière fondue).

Exercice 1.2. Des coccinelles et des pucerons

- 1. Justifier chaque terme du modèle (1.6) en expliquant comment il formalise l'une des hypothèses de modélisation.
- 2. Le modèle (1.6) est-il affine en l'entrée, affine en l'état, bilinéaire, linéaire?
- 3. Le modèle (1.6) a été établi avec deux populations : les pucerons (x₁) et les coccinelles (x₂). La coccinelle adulte peut ingérer jusqu'à 100 pucerons par jour, mais la larve est encore plus vorace, pouvant en ingérer jusqu'à 150 par jour. En formulant des hypothèses de modélisation pertinentes supplémentaires, établir un modèle d'état plus précis en y distinguant les coccinelles adultes et les larves (c'est-à dire un modéle avec trois variables d'état : les pucerons (x₁), les larves (x₂) et les coccinelles adultes (x₃)).

Chapitre 2

Systèmes mécaniques articulés

Le sujet de ce chapitre est la mise en équation des modèles d'état des systèmes mécaniques formés d'un ensemble de corps rigides reliés entre eux par des articulations. La méthode systématique de modélisation que nous allons étudier s'applique à de nombreux exemples pratiques de systèmes mécaniques tels que les véhicules (automobiles, trains, avions,...) ou les robots. Cette méthode résulte d'une application systématique de la loi de Newton.

Dans le but de simplifier les notations et les calculs nous nous limiterons à l'établissement des équations du mouvement dans un espace à deux dimensions (c'est à dire dans un plan). L'extension au cas d'un mouvement dans un espace à trois dimensions est conceptuellement élémentaire mais plus difficile à visualiser.

Nous considérons tout d'abord le cas d'un corps rigide unique en l'absence de frottement. Ensuite, nous traitons la modélisation d'un système articulé constitué de plusieurs corps rigides. La méthode de modélisation est présentée en détail à l'aide d'un exemple de robot manipulateur à deux degrés de liberté. Enfin nous examinons comment étendre le modèle pour prendre en compte le frottement, l'élasticité des articulations et les contraintes non-holonomes.

2.1. Dynamique d'un corps rigide dans le plan

Nous considérons un corps rigide se déplaçant dans un plan dans lequel une base inertielle orthonormale $0, X_b, Y_b$ est fixée arbitrairement (Fig.2.1). Un vecteur \vec{W} est attaché au corps. La position du corps est complètement spécifiée par les 3 coordonnées x, y, θ :

– x,y sont les coordonnées cartésiennes du centre de masse G dans la base fixe $0, X_b, Y_b$;

FIGURE 2.1 – Coordonnées d'un corps rigide dans le plan

- θ est l'orientation du vecteur \vec{W} par rapport à la base fixe $0, X_b, Y_b$. Nous définissons le vecteur de dimension 3 décrivant la position du corps :

$$q \triangleq \left(\begin{array}{c} x\\ y\\ \theta \end{array}\right). \tag{2.1}$$

Une application directe des lois de Newton, coordonnée par coordonnée, conduit alors aux équations générales du mouvement suivantes :

- Equations de translation du centre de masse :

$$\begin{array}{rcl} m\ddot{x} &=& F_x,\\ m\ddot{y} &=& F_y. \end{array}$$

- Equation de rotation autour du centre de masse :

$$I\ddot{\theta} = T.$$

où m est la masse du corps, I est son moment d'inertie par rapport au centre de masse, F_x et F_y désignent les projections de la résultante des forces appliquées au corps sur les axes $0X_b$ et $0Y_b$ respectivement, T est la résultante des moments des forces appliquées pour la rotation du corps autour du centre de masse.

Ces équations générales du mouvement constituent la base de l'établissement du modèle d'état du système comme nous allons l'illustrer dans un exemple.

Exemple 2.1. Modélisation de la dynamique d'une fusée.

Nous considérons une fusée se déplaçant dans un plan perpendiculaire à la terre. La fusée est propulsée par deux moteurs à réaction disposés symétriquement

FIGURE 2.2 – Modélisation de la dynamique d'une fusée - Photo de la fusée Ariane au décollage (© ESA)

par rapport au corps de la fusée comme indiqué sur la Figure 2.2. Les équations du mouvement sont établies sous **l'hypothèse de modélisation** que la fusée constitue un corps rigide de masse constante.

- Equations de translation :

$$m\ddot{x} = F_x = (F_1 + F_2)\cos\theta,$$

$$m\ddot{y} = F_y = (F_1 + F_2)\sin\theta - mg_0.$$
(2.2)

- Equation de rotation :

$$I\ddot{\theta} = T = (F_2 - F_1)d\sin\alpha.$$
(2.3)

Dans ces équations, (x, y) est la position du centre de masse G, θ l'angle du vecteur \vec{W} par rapport à l'horizontale, F_1, F_2 les poussées des réacteurs, m la masse de la fusée, I son moment d'inertie, d, α des paramètres géométriques (Fig.2.2) et g_0 la constante de gravitation.

Les équations (2.2)-(2.3) se mettent sous la forme standard d'un modèle d'état $\dot{x} = f(x, u)$ de dimension 6 avec deux entrées si l'on introduit les notations suivantes :

Variables d'état :

 $x_1 = x, \quad x_2 = y, \quad x_3 = \theta, \quad x_4 = \dot{x}, \quad x_5 = \dot{y}, \quad x_6 = \dot{\theta}.$

Variables d'entrée :

$$u_1 = F_1, \qquad u_2 = F_2.$$

Le modèle d'état s'écrit comme suit :

$$\dot{x}_{1} = x_{4},$$

$$\dot{x}_{2} = x_{5},$$

$$\dot{x}_{3} = x_{6},$$

$$\dot{x}_{4} = \frac{\cos x_{3}}{m}(u_{1} + u_{2}),$$

$$\dot{x}_{5} = -g_{0} + \frac{\sin x_{3}}{m}(u_{1} + u_{2}),$$

$$\dot{x}_{6} = \frac{d \sin \alpha}{I}(u_{2} - u_{1}). \Box$$

Une situation particulière apparaît lorsque le corps considéré est soumis à un ensemble de forces dont la résultante est nulle mais qui ne sont pas toutes appliquées au même point. Les équations du mouvement s'écrivent alors :

$$\begin{array}{rcl} m\ddot{x} &=& 0\\ m\ddot{y} &=& 0\\ I\ddot{\theta} &=& T \end{array}$$

Dans un tel cas, il est d'usage dans certaines applications de ne pas spécifier les forces qui sont à l'origine du moment T mais de considérer directement celui ci comme la cause du mouvement. On dit, pour simplifier, que le corps est soumis à un *couple*. C'est ainsi par exemple que l'on parlera du couple fourni par un moteur pour faire tourner un segment de robot manipulateur.

Le modèle d'état obtenu dans l'exemple de la fusée est non-linéaire par rapport aux variables d'état et affine par rapport aux variables d'entrée. Ce sera le cas pour la plupart des applications qui nous intéressent et pour lesquelles les équations de translation et de rotation décrivant la dynamique d'un corps rigide peuvent s'écrire sous la forme matricielle générale :

$$J\ddot{q} + b(q) = B(q)u.$$

Dans cette équation J est la matrice (diagonale et constante) d'inertie, b(q) représente l'effet de la gravitation et B(q) est une matrice (dite cinématique) dépendant non-linéairement des variables d'état. On en déduit que le modèle d'état s'écrit sous la forme générale suivante :

$$\begin{array}{lll} \dot{q} &=& v, \\ \dot{v} &=& J^{-1}[-b(q)+B(q)u], \end{array}$$

où $v \triangleq \dot{q}$ est appelé vecteur des vitesses généralisées.

2.2. Dynamique des systèmes mécaniques articulés

Nous considérons maintenant le cas d'un système mécanique articulé quelconque comportant N corps. La procédure générale de mise en équations du modèle d'état peut se résumer comme suit :

- 1. Fixer un repère inertiel dans l'espace de configuration du système et N repères mobiles attachés aux centres de masse des N corps du système.
- Ecrire les équations des contraintes de parcours et de liaison auxquelles est soumis le mouvement du système. En déduire le nombre de degrés de liberté.
- Ecrire les équations du mouvement (translation et rotation) pour chacune des coordonnées en y incluant les forces de liaison relatives aux contraintes (méthode des coefficients de Lagrange).
- 4. Eliminer les coefficients de Lagrange et les coordonnées redondantes.

Nous allons maintenant détailler cette procédure, expliciter les concepts nouveaux (degrés de liberté, coefficients de Lagrange, coordonnées redondantes) qui ont été mentionnés et l'illustrer avec un exemple typique : le développement du modèle dynamique d'un robot manipulateur à deux degrés de liberté.

Première étape : Définition des coordonnées

Un repère inertiel est fixé dans l'espace de configuration Ω du système. N repères mobiles sont attachés aux centres de masse des N corps du système. La position du système est à tout moment caractérisée par le vecteur des coordonnées

$$\xi = (x_1 \ y_1 \ \theta_1 \ \dots \ x_N \ y_N \ \theta_N)^T$$

de dimension 3N.

Deuxième étape : Expression des contraintes géométriques

Le mouvement d'un sytème mécanique articulé peut être soumis à deux types de contraintes (dites géométriques) : des contraintes de parcours d'une part et les

contraintes de liaison entre corps d'autre part. Ces contraintes s'expriment sous la forme d'un ensemble de relations algébriques entre les coordonnées que nous noterons

$$\Psi(\xi) = 0,$$

où Ψ est une application $\Omega \to \mathbb{R}^p$ de classe C^1 et p désigne le nombre de contraintes. Selon le théorème des fonctions implicites, dans un voisinage de tout point ξ de l'espace de configuration, il existe une partition $\xi = (q, \bar{q})$ du vecteur des coordonnées telle que :

– la dimension (notée σ) de \bar{q} est égale au rang de la matrice jacobienne de l'application Ψ :

$$\sigma \triangleq \dim \bar{q} = \operatorname{rang} \frac{\partial \Psi}{\partial \varepsilon};$$

- on peut exprimer les coordonnées \bar{q} en fonction des coordonnées q :

$$\bar{q} = \phi(q). \tag{2.4}$$

Il en résulte que l'on peut utiliser l'expression (2.4) pour éliminer les *coordonnées* redondantes \bar{q} de la description du système. La dimension du vecteur q des coordonnées qui sont conservées est le *nombre de degrés de liberté* du système, noté δ :

$$\delta \triangleq 3N - \sigma.$$

Troisième étape : Equations du mouvement

On écrit ensuite les équations du mouvement (translation et rotation) pour chacune des coordonnées en y incluant les forces de liaison relatives aux contraintes. La partition (q, \bar{q}) des coordonnées induit une partition similaire de l'ensemble des équations du mouvement comme suit :

$$J\ddot{q} + b(q,\bar{q}) = B(q,\bar{q})u + w, \qquad (2.5)$$

$$\bar{J}\bar{q} + \bar{b}(q,\bar{q}) = \bar{B}(q,\bar{q})u + \bar{w}.$$
(2.6)

Dans ces équations, les vecteurs w et \bar{w} représentent les forces de liaison qui garantissent que les contraintes sont satisfaites à tout instant au cours du mouvement du système. On montre dans les ouvrages de base en mécanique que ces forces de liaison s'expriment comme suit :

$$w = -A(q)\lambda,$$

 $\bar{w} = \lambda.$

où λ est le vecteur des *coefficients de Lagrange* (de dimension σ) et A(q) est la matrice de dimensions $\delta \times \sigma$ définie comme suit :

$$A(q) \triangleq (\frac{\partial \phi}{\partial q})^T.$$

Quatrième étape : Elimination des coordonnées redondantes

De l'équation (2.6), λ s'exprime :

$$\lambda = \bar{J}\bar{\bar{q}} + \bar{b}(q,\bar{q}) - \bar{B}(q,\bar{q})u.$$

En substituant cette expression dans (2.5) et en utilisant (2.4), on obtient :

$$J\ddot{q} + A(q)J\ddot{\bar{q}} + b(q,\phi(q)) + A(q)b(q,\phi(q)) = (B(q,\phi(q)) + A(q)\bar{B}(q,\phi(q)))u.$$
(2.7)

Il ne reste plus alors qu'à éliminer \ddot{q} . Pour cela on différencie deux fois l'expression (2.4) :

$$\dot{\bar{q}} = A^T(q)\dot{q} \tag{2.8}$$

$$\ddot{\bar{q}} = A^T(q)\ddot{q} + \dot{A}^T(q)\dot{q}.$$
(2.9)

En substituant cette dernière expression (2.9) dans (2.7) et en introduisant les notations suivantes :

$$M(q) \triangleq J + A(q)\bar{J}A^{T}(q),$$

$$f(q, \dot{q}) \triangleq A(q)\bar{J}\dot{A}^{T}(q)\dot{q},$$

$$g(q) \triangleq b(q, \phi(q)) + A(q)\bar{b}(q, \phi(q)),$$

$$G(q) \triangleq B(q, \phi(q)) + A(q)\bar{B}(q, \phi(q)),$$

on obtient finalement le modèle dynamique général d'un système mécanique articulé sous la forme suivante :

$$M(q)\ddot{q} + f(q,\dot{q}) + g(q) = G(q)u.$$
(2.10)

Dans cette équation :

- q est le vecteur (de dimension δ) des coordonnées nécessaires à la description du système,
- M(q) est la matrice d'inertie (de dimensions $\delta \times \delta$) symétrique et définie positive,
- $f(q,\dot{q})$ est le vecteur (de dimension δ) qui représente les forces et les couples résultant des liaisons relatives aux contraintes; il peut aussi s'écrire sous la forme

$$f(q, \dot{q}) = C(q, \dot{q})\dot{q}$$

où $C(q, \dot{q})$ est la matrice de dimensions $\delta \times \delta$ définie comme suit :

$$C(q, \dot{q}) \triangleq A(q) \bar{J} \dot{A}^T(q),$$

- g(q) est un vecteur (de dimension δ) représentant les forces et les couples résultant de la gravité,
- -u est le vecteur (de dimension m) des forces et couples appliqués au système,
- G(q) est une matrice cinématique de dimensions $\delta \times m$.

Une fois le modèle dynamique général (2.10) établi, il ne reste qu'à en déduire le modèle d'état du système :

$$\dot{q} = v,$$

 $\dot{v} = M^{-1}(q)[-f(q,v) - g(q) + G(q)u].$

Dans ces équations d'état, q est le vecteur des coordonnées de position et $v = \dot{q}$ est le vecteur des coordonnées de vitesse.

Exemple 2.2. Modèle dynamique d'un robot manipulateur.

Un robot manipulateur est formé d'un ensemble de segments rigides articulés. Les articulations sont de type rotoïde ou de type prismatique. Une articulation rotoïde permet un mouvement relatif de rotation entre deux segments. Une articulation prismatique permet un mouvement relatif de translation entre deux segments.

Les robots sont actionnés par des moteurs encastrés produisant des forces de translation pour les articulations prismatiques et des couples de rotation pour les articulations rotoïdes.

Nous considérons le robot manipulateur représenté à la figure 2.3 et formé d'un segment rigide se déplaçant horizontalement (corps 1) auquel est articulé un deuxième segment rigide pouvant effectuer un mouvement de rotation (corps 2). Le mouvement du système est provoqué par la force F appliquée horizontalement au premier segment et le couple de rotation T appliqué au deuxième segment. Le repère inertiel et les différentes coordonnées sont indiquées sur la figure.

Ce système est soumis aux contraintes suivantes :

Contraintes de parcours :

$$y_1 = 0,$$

$$\theta_1 = 0.$$

Contraintes de liaison :

$$x_2 - b\sin\theta_2 - x_1 - a = 0,$$

$$y_2 + b\cos\theta_2 = 0.$$

FIGURE 2.3 – Modélisation d'un robot manipulateur

Les contraintes de parcours expriment le fait que le corps 1 ne peut se déplacer qu'horizontalement. Les contraintes de liaison expriment la relation existant entre les coordonnées cartésiennes des centres de masse des deux corps en raison de leur articulation. La matrice jacobienne des contraintes s'écrit comme suit :

On observe que cette matrice est de plein rang $\sigma = 4$ et donc que le système possède $\delta = 2$ degrés de liberté (comme on pouvait s'y attendre). On observe aussi que l'on peut définir la partition (q, \bar{q}) des coordonnées comme suit :

$$q = \begin{pmatrix} x_1 \\ \theta_2 \end{pmatrix}, \ \bar{q} = \begin{pmatrix} y_1 \\ \theta_1 \\ x_2 \\ y_2 \end{pmatrix}$$

Il est aisé de vérifier que dans tout l'espace de configuration, les coordonnées \bar{q} peuvent s'exprimer comme une fonction explicite $\bar{q} = \phi(q)$ des coordonnées q:

$$y_1 = 0,$$
 (2.11)

$$\theta_1 = 0, \tag{2.12}$$

$$x_2 = x_1 + b\sin\theta_2 + a, \tag{2.13}$$

$$y_2 = -b\cos\theta_2. \tag{2.14}$$

On pourra donc éliminer les coordonnées $\bar{q} = (y_1, \theta_1, x_2, y_2)^T$ de la description du système et ne conserver que les coordonnées $q = (x_1, \theta_2)^T$. La matrice A(q)s'écrit :

$$A(q) = \left(\frac{\partial\phi}{\partial q}\right)^T = \left(\begin{array}{ccc} 0 & 0 & 1 & 0\\ 0 & 0 & b\cos\theta_2 & b\sin\theta_2 \end{array}\right)$$

Les équations du mouvement s'écrivent :

$$m_1 \ddot{x}_1 = F - \lambda_3, \tag{2.15}$$

$$I_2\hat{\theta}_2 = -\lambda_3 b\cos\theta_2 - \lambda_4 b\sin\theta_2 + T, \qquad (2.16)$$

$$m_1 \ddot{y}_1 = -m_1 g_0 + \lambda_1,$$
 (2.17)
 $I_1 \ddot{\theta}_1 = \lambda_2,$ (2.18)

$$I_1\ddot{\theta}_1 = \lambda_2,\tag{2.18}$$

$$m_2 \ddot{x}_2 = \lambda_3, \tag{2.19}$$

$$m_2 \ddot{y}_2 = -m_2 g_0 + \lambda_4. \tag{2.20}$$

En combinant les contraintes (2.11), (2.12) avec les équations du mouvement (2.17), (2.18) on déduit les valeurs suivantes de λ_1 et λ_2 :

$$\lambda_1 = m_1 g_0, \quad \lambda_2 = 0.$$

Ces valeurs expriment les forces de liaison appliquées aux deux corps pour satisfaire les contraintes de parcours le long du mouvement du système.

D'autre part, en éliminant λ_3 et λ_4 entre les équations du mouvement (2.15), (2.16), (2.19), (2.20), on obtient :

$$\begin{pmatrix} m_1 \ddot{x}_1 \\ I_2 \ddot{\theta}_2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ b \cos \theta_2 & b \sin \theta_2 \end{pmatrix} \begin{pmatrix} m_2 \ddot{x}_2 \\ m_2 \ddot{y}_2 \end{pmatrix} = \begin{pmatrix} F \\ T - b m_2 g_0 \sin \theta_2 \end{pmatrix}.$$
(2.21)

En dérivant deux fois les contraintes (2.13), (2.14), on obtient :

$$\begin{pmatrix} m_2 \ddot{x}_2 \\ m_2 \ddot{y}_2 \end{pmatrix} = \begin{pmatrix} 1 & b \cos \theta_2 \\ 0 & b \sin \theta_2 \end{pmatrix} \begin{pmatrix} m_2 \ddot{x}_1 \\ m_2 \ddot{\theta}_2 \end{pmatrix} + m_2 b \dot{\theta}_2^2 \begin{pmatrix} -\sin \theta_2 \\ \cos \theta_2 \end{pmatrix}.$$
 (2.22)

En substituant (2.22) dans (2.21), on obtient finalement le modèle du système sous la forme désirée :

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = G(q)u,$$
(2.23)

avec

$$M(q) = \begin{pmatrix} m_1 + m_2 & m_2 b \cos \theta_2 \\ m_2 b \cos \theta_2 & I_2 + m_2 b^2 \end{pmatrix},$$

$$C(q, \dot{q}) = \begin{pmatrix} 0 & -m_2 b \dot{\theta}_2 \sin \theta_2 \\ 0 & 0 \end{pmatrix},$$

$$g(q) = \begin{pmatrix} 0 \\ b m_2 g_0 \sin \theta_2 \end{pmatrix},$$

$$G(q)u = \begin{pmatrix} F \\ T \end{pmatrix}.$$

2.3. Propriétés de la matrice d'inertie

- 1. La matrice d'inertie M(q) est symétrique et définie positive. En effet, elle est la somme d'une matrice diagonale J dont les éléments sont positifs et d'une matrice symétrique et semi-définie positive $A(q)\overline{J}A^T(q)$.
- 2. La dérivée temporelle de la matrice d'inertie $\dot{M}(q)$ vérifie la relation suivante :

$$\dot{M}(q) = A(q)\bar{J}\dot{A}^{T}(q) + \dot{A}(q)\bar{J}A^{T}(q),$$
$$= C(q,\dot{q}) + C^{T}(q,\dot{q}).$$

Cette relation implique que la matrice

$$\dot{M}(q) - 2C(q, \dot{q}) \tag{2.24}$$

est antisymétrique.

3. La matrice d'inertie M(q) vérifie la relation suivante :

$$\frac{\partial}{\partial q}(\dot{q}^T M(q)\dot{q}) = \dot{q}^T C(q, \dot{q}).$$
(2.25)

La vérification de cette expression est laissée à titre d'exercice.

2.4. Articulations élastiques

Nous avons considéré jusqu'à présent des systèmes mécaniques articulés formés uniquement de corps rigides sans possibilité de flexibilité ou de souplesse dans les liaisons et les articulations. Une telle hypothèse n'est pas réaliste dans de nombreuses applications. Une manière simple d'introduire de la souplesse dans les articulations d'un système mécanique articulé est de placer un petit ressort (fictif) de masse nulle dans les liaisons entre corps comme indiqué sur la figure 2.4. Ce ressort exerce une force de rappel sur chacun des deux corps auxquels il est attaché. Cette force s'applique au point de fixation du ressort et est une fonction monotone croissante de l'élongation du ressort. Elle s'ajoute aux autres forces appliquées au système dans l'écriture des équations du mouvement. Lorsque de l'élasticité est ainsi introduite dans une articulation entre deux corps du système, il va de soi que la ou les contraintes de liaison correspondantes disparaissent et que le nombre de degrés de liberté est augmenté corrélativement. Nous illustrons la méthode sur un exemple simple d'un système à deux corps.

Exemple 2.3. Système à deux corps avec une articulation élastique.

FIGURE 2.4 – Modélisation d'une articulation élastique

Nous considérons le système à deux corps représenté sur la figure 2.4. Les équations du mouvement des deux corps s'écrivent comme suit :

$$m_1 \ddot{x}_1 = F_1,$$
 (2.26)

$$m_1 \ddot{y}_1 = F_2,$$
 (2.27)

$$I_1\ddot{\theta}_1 = F_2 d_1 \cos\theta_1 - F_1 d_1 \sin\theta_1, \qquad (2.28)$$

$$m_2\ddot{x}_2 = -F_1,$$
 (2.29)

$$m_2 \ddot{y}_2 = -F_2,$$
 (2.30)

$$I_2 \ddot{\theta}_2 = F_1 d_2 \sin \theta_2 - F_2 d_2 \cos \theta_2, \tag{2.31}$$

où F_1 et F_2 désignent les amplitudes des composantes des forces de rappel appliquées aux deux corps en raison de la présence du ressort.

Les coordonnées cartésiennes des points de fixation du ressort sur les deux

corps s'expriment comme suit :

$$\tilde{x}_1 = x_1 + d_1 \cos \theta_1,$$

$$\tilde{x}_2 = x_2 - d_2 \cos \theta_2,$$

$$\tilde{y}_1 = y_1 + d_1 \sin \theta_1,$$

$$\tilde{y}_2 = y_2 - d_2 \sin \theta_2.$$

L'élongation du ressort est définie comme le vecteur de composantes ϵ_1 et ϵ_2 :

$$\epsilon_1 = \tilde{x}_2 - \tilde{x}_1 \qquad \epsilon_2 = \tilde{y}_2 - \tilde{y}_1$$

Les forces de rappel F_1 et F_2 sont modélisées comme des fonctions monotones croissantes des composantes de l'élongation (voir Figure 2.5) :

FIGURE 2.5 – Articulations élastiques : force de rappel en fonction de l'élongation

Souvent, pour des raisons de simplicité, on adopte un modèle linéaire c-à-d :

$$F_1 = k_0(\tilde{x}_2 - \tilde{x}_1) = k_0((x_2 - x_1) - (d_1 \cos \theta_1 + d_2 \cos \theta_2)),$$

$$F_2 = k_0(\tilde{y}_2 - \tilde{y}_1) = k_0((y_2 - y_1) - (d_1 \sin \theta_1 + d_2 \sin \theta_2)),$$

où la constante k_0 est appelée *constante de rappel* du ressort. Dans ce cas, les équations du mouvement (2.26)-(2.31) se réécrivent comme suit :

$$\begin{split} m_1 \ddot{x}_1 &= k_0 ((x_2 - x_1) - (d_1 \cos \theta_1 + d_2 \cos \theta_2)), \\ m_1 \ddot{y}_1 &= k_0 ((y_2 - y_1) - (d_1 \sin \theta_1 + d_2 \sin \theta_2)), \\ I_1 \ddot{\theta}_1 &= k_0 d_1 ((x_1 - x_2 + d_1 \cos \theta_1 + d_2 \cos \theta_2) \sin \theta_1 \\ &+ (y_2 - y_1 - d_1 \sin \theta_1 - d_2 \sin \theta_2) \cos \theta_1), \\ m_2 \ddot{x}_2 &= -k_0 ((x_2 - x_1) - (d_1 \cos \theta_1 + d_2 \cos \theta_2)), \\ m_2 \ddot{y}_2 &= -k_0 ((y_2 - y_1) - (d_1 \sin \theta_1 + d_2 \sin \theta_2)), \\ I_2 \ddot{\theta}_2 &= k_0 d_2 ((x_2 - x_1 - d_1 \cos \theta_1 - d_2 \cos \theta_2) \sin \theta_2 \\ &+ (y_1 - y_2 + d_1 \sin \theta_1 + d_2 \sin \theta_2) \cos \theta_2). \end{split}$$

Cet exemple montre que dans le cas d'un système mécanique articulé, le modèle dynamique général (2.10) est modifié comme suit :

$$M(q)\ddot{q} + f(q,\dot{q}) + g(q) + k(q) = G(q)u$$
(2.32)

où apparaît le terme additionnel k(q) qui représente l'effet des forces de rappel du à la présence d'articulations élastiques dans le système.

2.5. Frottement

La présence de forces de frottement est un autre phénomène physique que nous avons négligé jusqu'ici et qui a souvent un effet important sur le mouvement des systèmes mécaniques. En particulier, dans le cas d'articulations élastiques modélisées comme dans la section précédente, la présence d'un amortissement par le frottement est indispensable si l'on veut éviter de développer des modèles qui soient le siège d'oscillations persistantes peu conformes à la réalité expérimentale.

Il y a plusieurs manières d'introduire le frottement dans la description d'un système mécanique articulé. Nous retiendrons ici la plus simple qui consiste à supposer que le mouvement de chacune des coordonnées q_i du vecteur des coordonnées généralisées $q = (q_1, q_2, \ldots, q_{\delta})$ est affecté par une force de frottement séparée ne dépendant que de la vitesse (\dot{q}_i) de cette même coordonnée et notée $h_i(\dot{q}_i)$. Le vecteur de ces forces de frottement est lui même noté

$$h(\dot{q}) = \begin{pmatrix} h_1(\dot{q}_1) \\ h_2(\dot{q}_2) \\ \vdots \\ h_\delta(\dot{q}_\delta) \end{pmatrix}$$

de sorte que le modèle dynamique général (2.32) est augmenté comme suit :

$$M(q)\ddot{q} + f(q,\dot{q}) + g(q) + k(q) + h(\dot{q}) = G(q)u.$$

La forme la plus courante des fonctions $h_i(\dot{q}_i)$ est la suivante :

$$h_i(\dot{q}_i) = \alpha_i \operatorname{sign}(\dot{q}_i) + \beta_i(\dot{q}_i).$$

Dans cette équation le premier terme $\alpha_i \operatorname{sign}(\dot{q}_i)$ représente le frottement sec tandis que le deuxième terme $\beta_i(\dot{q}_i)$ représente le frottement visqueux. Le coefficient α_i est constant. La fonction β_i est monotone croissante avec $\beta(0) = 0$. On remarquera que la fonction h est discontinue à l'origine, ce qui peut entrainer des difficultés pour la simulation et l'analyse du système. Dans les applications qui seront considérées dans ce livre, sauf indication contraire, nous supposerons que le frottement sec est négligé ($\alpha_i = 0$).

2.6. Energie et équation d'Euler-Lagrange

L'énergie cinétique E_C d'un système mécanique articulé est définie comme suit :

$$E_C(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q}.$$

L'énergie potentielle E_P est une primitive de la somme des forces dérivant d'un potentiel, c'est à dire les forces de gravité et les forces de rappel des ressorts :

$$\frac{\partial E_P(q)}{\partial q} = g^T(q) + k^T(q).$$

L'énergie totale E_T est la somme de l'énergie cinétique et de l'énergie potentielle :

$$E_T = E_C + E_P.$$

L'évolution de l'énergie totale au cours du mouvement du système est examinée en calculant sa dérivée temporelle :

$$\dot{E}_T = \frac{\partial E_C}{\partial \dot{q}} \ddot{q} + \frac{\partial E_C}{\partial q} \dot{q} + \frac{\partial E_P}{\partial q} \dot{q}$$

$$= \dot{q}^T [M(q)\ddot{q} + \frac{1}{2}\dot{M}(q)\dot{q} + g(q) + k(q)].$$
(2.33)

En substituant l'expression de $M(q)\ddot{q}$ extraite de l'équation générale du mouvement (2.23), on obtient :

$$\dot{E}_T = \frac{1}{2} \dot{q}^T [\dot{M}(q) - 2C(q, \dot{q})] \dot{q} + \dot{q}^T [G(q)u - h(\dot{q})].$$

Le premier terme du membre de droite de cette équation est nul car la matrice $\dot{M}(q) - 2C(q, \dot{q})$ est antisymétrique (voir plus haut). Il reste donc :

$$\dot{E}_T = \dot{q}^T [G(q)u - h(\dot{q})],$$

Lorsque le système n'est soumis à aucune autre force que celles qui dérivent d'un potentiel, l'énergie totale est constante tout au long du mouvement :

$$G(q)u - h(\dot{q}) = 0 \quad \Rightarrow \quad \dot{E}_T = 0.$$

Dans ce cas, on dit que le système est conservatif.

En utilisant les propriétés (2.24) et (2.25), on vérifie aussi que l'énergie cinétique satisfait la relation suivante :

$$\frac{d}{dt}\left(\frac{\partial E_C}{\partial \dot{q}}\right)^T - \left(\frac{\partial E_C}{\partial q}\right)^T = M(q)\ddot{q} + C(q,\dot{q})\dot{q}.$$

Il s'en suit qu'une expression alternative de l'équation générale du mouvement (2.23) est donnée par l'expression :

$$\frac{d}{dt}\left(\frac{\partial L(q,\dot{q})}{\partial \dot{q}}\right)^T - \left(\frac{\partial L(q,\dot{q})}{\partial q}\right)^T = G(q)u - h(\dot{q})$$

avec :

$$L(q, \dot{q}) \triangleq E_C(q, \dot{q}) - E_P(q, \dot{q}).$$

Cette équation porte généralement le nom d'équation d'Euler-Lagrange et la quantité $L(q, \dot{q})$ est appelée Lagrangien du système.

2.7. Systèmes non-holonomes

Les systèmes non-holonomes sont des systèmes mecaniques articulés dont les contraintes de parcours peuvent dépendre non seulement des positions q mais aussi des vitesses \dot{q} . Lorsque ces contraintes ne peuvent etre intégrées pour produire des contraintes de parcours qui dépendent exclusivement des coordonnées de configuration, elles sont appelées *non-holonomes*. Cette situation se présente dans de nombreuses applications pratiques, notamment dans le domaine de l'automobile, dans le domaine aéronautique et en robotique. Nous considérons le cas particulier d'un système ayant δ degrés de liberté qui est soumis à m contraintes non-holonomes indépendantes ($m < \delta$) qui sont linéaires par rapport aux vitesses :

$$N^T(q)\dot{q} = 0$$

avec la matrice $N^T(q)$ de dimensions $(m \times \delta)$ et de plein rang. Définissons la matrice S(q), de dimensions $\delta \times (\delta - m)$ et de plein rang, telle que :

$$N^T(q)S(q) = 0.$$

Les contraintes sont équivalentes au fait que le vecteur des vitesses \dot{q} appartient à l'espace engendré par les colonnes de la matrice S(q) ou, autrement dit, qu'il existe un vecteur η de dimension $(\delta - m)$ tel que :

$$\dot{q} = S(q)\eta. \tag{2.34}$$

Les équations du mouvement s'écrivent sous la forme standard :

$$M(q)\ddot{q} + f(q,\dot{q}) + g(q) + N(q)\lambda = G(q)u,$$

en y ajoutant le terme $N(q)\lambda$ qui représente les forces de liaison qui garantissent que les contraintes sont satisfaites le long du mouvement (voir section 1.2.3).
2.8. Exercices

On élimine les multiplicateurs de Lagrange λ en prémultipliant cette équation par $S^T(q)$:

$$S^{T}(q)M(q)\ddot{q} + S^{T}(q)[C(q,\dot{q})\dot{q} + g(q)] = S^{T}(q)G(q)u.$$

Finalement, en utilisant la relation (2.34), on obtient l'expression :

$$J(q)\dot{\eta} + F(q,\eta) = S^T(q)G(q)u$$
(2.35)

avec

$$J(q) = S^{T}(q)M(q)S(q)$$

$$F(q,\eta) = S^{T}(q)M(q)\{[\partial_{q}S(q)]S(q)\eta\}\eta + S^{T}(q)f(q,S(q)\eta).$$

Le modèle dynamique général d'un système non-holonome est ainsi constitué des équations (2.34) et (2.35) que l'on peut écrire sous la forme d'un modèle d'état :

$$\dot{q} = S(q)\eta$$

$$\dot{\eta} = J^{-1}(q)[-F(q,\eta) + S^T(q)G(q)u].$$

On observe que le vecteur d'état :

$$\left(\begin{array}{c} q\\ \eta \end{array}\right)$$

est de dimension $(2\delta - m)$ avec les coordonnées η homogènes à des vitesses.

2.8. Exercices

Exercice 2.1. Robots manipulateurs

On a représenté à la figure 2.6 trois configurations de robots planaires à deux degrés de liberté. Pour chacune de ces configurations :

- 1. Etablir le modèle dynamique du système et le modèle d'état correspondant. Expliciter les matrices $M(q), C(q, \dot{q})$ et G(q) ainsi que le vecteur g(q).
- 2. Vérifier que le modèle est conservatif et qu'il satisfait l'équation d'Euler-Lagrange.
- 3. Indiquer comment se modifient les équations du modèle si les segments sont soumis à un frottement visqueux proportionnel au carré de la vitesse.

Exercice 2.2. Modélisation de la dynamique d'une fusée

On considère une fusée propulsée par un moteur à réaction orientable comme indiqué sur la figure 2.7 et se déplaçant dans un plan vertical. L'orientation du moteur est pilotée par un actionneur hydraulique fournissant un couple T. Le moteur lui-même fournit une force de propulsion F.

FIGURE 2.6 – Configurations de robots manipulateurs planaires

 $\mathrm{FIGURE}\ 2.7$ – Fusée à moteur orientable

1. Etablir les équations du modèle d'état du système, sous l'hypothèse que les deux parties de la fusée (corps principal et moteur) sont des corps rigides de masse constante.

Exercice 2.3. Modélisation dynamique du module d'excursion lunaire

Lors de la mission Apollo 11, les astronautes Armstrong et Aldrin se sont posés sur la lune au moyen du LEM (Lunar Excursion Module; Fig. 2.8). On considère les hypothèses de modélisation suivantes :

FIGURE 2.8 – Module d'excursion lunaire

- a) le LEM est un corps rigide
- b) le mouvement est vertical
- c) les forces agissant sur le système sont la poussée F et l'attraction lunaire
- d) la masse de combustible embarqué constitue une partie importante (non négligeable) de la masse totale du LEM
- e) la masse de combustible consommée par unité de temps est proportionnelle à *F*.
- Etablir un modèle d'état du système qui satisfait ces hypothèses de modélisation.
- 2. Quelles sont les principales limites de validité de ce modèle?

Exercice 2.4. Un train pendulaire

Un train pendulaire est un train qui peut se déplacer à très grande vitesse dans les virages sans qu'il soit nécessaire d'incliner les voies. Pour cela chaque voiture est munie d'un dispositif actif qui applique une force verticale à la caisse de la voiture pour contrebalancer l'effet de la force « centrifuge ». Ceci est illustré sur la figure 2.9 où une section de la caisse d'une voiture est représentée schématiquement avec F_g la force de gravité (appliquée au centre de masse G), F_c la force "centrifuge" et F_a la force appliquée. On suppose que la ligne d'action de la force F_a est verticale quelle que soit la position angulaire θ de la caisse. D'autre part la suspension de la voiture est schématisée par un ressort vertical qui exerce une force proportionnelle à son élongation. Le point d'application P du ressort est *contraint de se déplacer verticalement*. Etablir un modèle d'état du système.

Exercice 2.5. Modélisation de la dynamique d'un camion

On considère un camion se déplaçant en ligne droite (Fig. 2.10), sous les hypothèses de modélisation suivantes :

Systèmes mécaniques articulés

FIGURE 2.9 – Un train pendulaire

FIGURE 2.10 – Modélisation de la dynamique d'un camion

- a) Le camion est un système articulé composé de corps rigides (caisse et roues).
- b) Le camion est équipé d'une propulsion arrière (le couple développé par le moteur est transmis aux roues arrières).
- c) Les roues roulent sans glisser.
- d) Les roues sont reliées au chassis par un système de suspension composé d'un ressort linéaire et d'un amortisseur à frottement visqueux de masse négligeable. Ce système de suspension ne permet que des déplacements verticaux.

2.8. Exercices

- 1. Etablir un modèle d'état du système qui satisfait ces hypothèses de modélisation (se limiter à deux corps : le chassis et une roue motrice).
- 2. Quelles sont les principales limites de validité de ce modèle?

Exercice 2.6. Un bateau

Un bateau muni d'un moteur orientable de type « hors-bord » se déplace sur un fleuve comme illustré à la figure 2.11 (vue du dessus). Le fleuve est de largeur constante (= 2L). La poussée du moteur est représentée par le vecteur de longueur F (= grandeur de la force de propulsion) et d'orientation β . Le bateau est aussi soumis à la force du courant du fleuve qui est une fonction parabolique de l'abscisse y : le courant est nul aux deux bords et maximum au milieu du fleuve. Quand le moteur est à l'arrêt, le bateau est entraîné à la vitesse du courant par la force de frottement de l'eau sur la coque.

- 1. Etablir un modèle d'état du système. Pour simplifier, on peut supposer que :
 - a) le bateau est un corps rigide de masse constante;
 - b) le plan d'eau est quasi-horizontal et la gravité n'influence pas le mouvement du bateau ;
 - c) la force exercée par le courant s'applique ponctuellement au centre de masse du bateau (on néglige le fait que la force du courant peut s'exercer de manière variable en divers points de la coque).
- 2. Quelle doit être la capacité de propulsion du moteur pour que l'on ait la garantie que le bateau pourra remonter le courant ?

FIGURE 2.11 – Un bateau

Systèmes mécaniques articulés

Systèmes électriques et électromécaniques

Ce chapitre traite de la modélisation de systèmes dont la dynamique est essentiellement caractérisée par la présence de courants électriques, c'est à dire par le mouvement de charges électriques dans des matériaux conducteurs (par exemple des fils métalliques). Nous étudierons tout d'abord la mise en équation du modèle d'état des réseaux électriques. Nous étudierons ensuite les systèmes électromécaniques (en particulier les machines électriques) qui combinent en une description unifiée les équations d'état des réseaux électriques avec celles des systèmes mécaniques telles que nous les avons présentées au chapitre précédent.

3.1. Les réseaux électriques

Un réseau électrique est constitué d'un ensemble d'éléments appelés dipôles (voir Fig.3.1). Chaque dipôle comporte deux accès permettant le passage du courant i(t) dont le sens, indiqué sur la figure, est arbitrairement fixé. Lorsqu'un courant traverse le dipôle, il existe entre les deux bornes une tension électrique v(t), ou différence de potentiel, qui représente l'énergie nécessaire pour déplacer une charge électrique unitaire à travers le dipôle. Nous considérons deux types de dipôles : les impédances et les sources.

Les impédances

1. Les résistances. Les résistances sont des éléments qui transforment l'énergie électrique en chaleur. Elles sont représentées par le symbole de la figure 3.2 et sont caractérisées par une relation algébrique entre la tension v(t) et le courant i(t):

$$r(v(t), i(t)) = 0$$

FIGURE 3.1 – Dipôle électrique

FIGURE 3.2 – Impédances : résistance, capacité, inductance

Dans le cas d'une résistance linéaire, cette relation se particularise comme suit (loi d'Ohm) :

$$v(t) = Ri(t).$$

2. Les capacités. Les capacités sont des éléments qui accumulent les charges électriques. Elles sont représentées par le symbole de la figure 3.2 et sont caractérisées par la relation suivante entre la charge q(t) et le courant i(t):

$$i(t) = \frac{dq(t)}{dt}.$$

La charge q(t) est une fonction de la tension : q(v(t)). Cette relation peut aussi s'écrire sous la forme suivante :

$$i(t) = c(v(t)) \frac{dv(t)}{dt} \quad \text{où} \quad c(v) \triangleq \frac{\partial q}{\partial v}.$$

Dans le cas d'une capacité linéaire, cette relation se particularise comme suit :

$$q(t) = Cv(t) \quad \text{où} \quad i(t) = C \frac{dv(t)}{dt}.$$

3. Les inductances. Les inductances sont des éléments qui emmagasinent l'énergie d'un champ magnétique. Elles sont représentées par le symbole de la figure 3.2 et sont caractérisées, en vertu de la loi de Faraday, par la relation suivante entre le flux magnétique $\phi(t)$ et la tension v(t):

$$v(t) = \frac{d\phi}{dt}.$$
(3.1)

On dit que la tension v(t) est *induite* par la variation de flux $\phi(t)$ d'où le nom d'inductance. D'une manière générale, cette variation de flux peut être produite par un matériau magnétique en mouvement dans les parages de l'inductance, ou encore par un courant électrique variable circulant dans un conducteur situé à proximité de l'inductance. Dans cette section, nous considérerons uniquement le cas particulier des *auto-inductances* où le flux est produit uniquement par le courant traversant le dipôle lui-même. Dans ce cas le flux est une fonction du courant : $\phi(i(t))$ et la relation (3.1) s'écrit aussi sous la forme suivante :

$$v(t) = l(i(t)) \frac{di(t)}{dt}$$
 où $l(i) \triangleq \frac{\partial \phi}{\partial i}$.

Dans le cas d'une (auto)inductance linéaire, cette relation se particularise comme suit :

$$\phi(t) = Li(t) \quad \text{où } v(t) = L \frac{di(t)}{dt}.$$

Les sources

1. Les sources de tension représentées par le symbole de la figure 3.3 sont des dipôles définis par la tension v(t) indépendamment du courant qu'ils débitent.

FIGURE 3.3 – Sources de tension et de courant

2. Les sources de courant représentées par le symbole de la figure 3.3 sont des dipôles définis par le courant i(t) qu'ils débitent indépendamment de la tension à leurs bornes.

FIGURE 3.4 – Pont d'impédances

FIGURE 3.5 – Sources avec résistances internes

Il est important de bien comprendre que les impédances et les sources sont des modèles conceptuels idéaux qui n'ont pas d'existence physique. Les différents éléments dont sont constitués les circuits électriques réels comme par exemple des bobines, des condensateurs ou des batteries sont en pratique modélisés par des assemblages appropriés d'inductances et de sources.

Un réseau électrique est défini comme la mise en connexion d'un ensemble fini de dipôles (impédances et sources). Il est clair qu'un réseau a une structure de graphe dont les branches sont formées par les dipôles. Un exemple de réseau et de graphe associé est donné à la figure 3.4 qui représente un pont d'impédances. Les flèches sur le graphe indiquent le sens conventionnel choisi pour le courant dans chacune des branches. Nous considérons des réseaux électriques **connexes** comportant N noeuds et M branches et qui satisfont l'hypothèse suivante (voir figure 3.5) : toutes les sources de tension sont incorporées dans une branche avec une résistance interne en série, toutes les sources de courant possèdent une résistance interne en série, toutes les connexe lorsqu'il existe toujours un chemin du graphe reliant deux noeuds quelconques.

Deux notions sont importantes pour la mise en équation des modèles d'état des réseaux électriques : les mailles et les coupes.

- Une *maille* est chemin "fermé" possédant deux branches incidentes en chaque noeud.
- Une *coupe* est ensemble de branches dont l'extraction partage un réseau connexe en deux sous-réseaux connexes séparés.

3.2. Mise en équations du modèle d'état d'un réseau électrique

L'établissement du modèle d'état d'un réseau électrique est basé sur les lois de Kirchhoff qui s'énoncent comme suit :

- Loi de Kirchhoff des courants : la somme algébrique des courants dans les branches incidentes à un noeud est nulle.
- Loi de Kirchhoff des tensions : la somme algébrique des tensions dans une maille est nulle.

Les variables d'état d'un réseau sont les courants dans certaines inductances et les tensions aux bornes de certaines capacités. Pour établir le modèle d'état d'un réseau, il suffit de procéder comme suit :

- 1. Ecrire N-1 équations de Kirchhoff pour les courants.
- 2. Ecrire M N + 1 équations de Kirchhoff linéairement indépendantes pour les tensions.
- 3. Ecrire les lois de définition des impédances correspondant aux tensions ou aux courants intervenant dans les équations de Kirchhoff
- 4. Eliminer les tensions et les courants redondants.

Lorsque le réseau ne contient pas de mailles de capacités, toutes les tensions aux bornes des capacités sont des variables d'état. De même lorsqu'un réseau ne contient pas de coupes d'inductances, tous les courants dans les inductances sont des variables d'état. Dans ce cas, on peut d'emblée réduire le nombre M de branches et le nombre N de noeuds en convenant qu'une branche peut être définie comme un ensemble de dipôles placés en série et comportant au plus une capacité ou une inductance.

Exemple 3.1. Circuit redresseur avec filtre LC

La figure 3.6 représente un circuit redresseur à diode avec un filtre formé d'une capacité et d'une inductance. La diode est une résistance nonlinéaire dont la caractéristique courant-tension s'exprime comme suit :

$$i = i_0 [e^{\frac{v}{\alpha}} - 1]$$

FIGURE 3.6 – Circuit redresseur

où α est une constante proportionnelle à la température et inversement proportionnelle à la charge de l'électron, tandis que i_0 désigne le courant de fuite de la diode. Il est clair que ce circuit ne contient ni maille de capacités ni coupe d'inductances. Donc son modèle d'état comportera deux variables d'état : la tension v_c aux bornes de la capacité et le courant i_1 dans l'inductance.

Le circuit comporte N = 2 noeuds et M = 3 branches. Pour établir le modèle d'état du système, on écrit N - 1 = 1 équation de Kirchhoff pour les courants :

$$i_c - i_1 + i_2 = 0,$$

et M - N + 1 = 2 équations de Kirhhoff pour les tensions :

$$v_c - v_2 = 0,$$

$$v_g + v_d + v_\ell + v_1 + v_c - e = 0.$$
(3.2)

Ces équations sont complétées par les équations de définition des divers éléments du circuit :

$$\begin{split} v_{g} &= R_{g}i_{1}, \\ v_{d} &= \alpha \ln \frac{i_{0} + i_{1}}{i_{0}}, \\ v_{\ell} &= L \frac{di_{1}}{dt}, \\ i_{c} &= C \frac{dv_{c}}{dt}, \\ v_{1} &= R_{1}i_{1}, \\ v_{2} &= R_{2}i_{2}. \end{split}$$

En éliminant les 7 variables $i_2, i_c, v_g, v_d, v_\ell, v_1, v_2$ entre ces 9 équations, on obtient

3.3. Les systèmes électromécaniques

aisément les deux équations suivantes :

$$R_{g}i_{1} + \alpha \ln \frac{i_{0} + i_{1}}{i_{0}} + L\frac{di_{1}}{dt} + R_{1}i_{1} + v_{c} - e = 0,$$
$$C\frac{dv_{c}}{dt} - i_{1} + \frac{v_{c}}{R_{2}} = 0.$$

En définissant les variables d'état et d'entrée comme suit :

$$x_1 = i_1, \quad x_2 = v_c, \quad u = e,$$
 (3.3)

on obtient finalement les équations d'état :

$$\dot{x}_1 = -\frac{R_1 + R_g}{L} x_1 - \frac{\alpha}{L} \ln\left(\frac{i_0 + x_1}{i_0}\right) - \frac{1}{L} x_2 + \frac{1}{L} u,$$

$$\dot{x}_2 = \frac{1}{C} x_1 - \frac{1}{R_2 C} x_2$$

Lorsque le réseau contient des mailles de capacités ou des coupes d'inductances, la détermination du nombre de variables d'état par inspection du réseau est moins immédiate. On introduit les définitions suivantes :

- Arbre : un arbre est un sous-réseau connexe qui contient tous les noeuds du réseau mais ne comporte aucune maille (tous les arbres d'un réseau ont le même nombre de branches : N 1).
- *Co-arbre* : un co-arbre est le sous réseau complémentaire d'un arbre (tous les co-arbres d'un réseau ont le même nombre de branches : M N + 1).

Le nombre de variables d'état peut alors être déterminé par la règle suivante :

- 1. Trouver un arbre
 - qui contienne le plus grand nombre possible de capacités,
 - tel que le co-arbre contienne le plus grand nombre possible d'inductances.
- Alors, le nombre de variables d'état est la somme du nombre de capacités de l'arbre et du nombre d'inductances du co-arbre.

3.3. Les systèmes électromécaniques

Un système électromécanique est défini comme un système mécanique articulé (à p degrés de liberté) qui peut être construit partiellement dans un matériau magnétique et dont certains corps portent un ou plusieurs circuits électriques inductifs (bobines, enroulements ...). Les équations constitutives d'un système électromécanique comportent dès lors une partie mécanique et une partie électrique.

FIGURE 3.7 – Circuit élémentaire

Equations mécaniques. Les équations de la partie mécanique prennent la forme générale que nous avons obtenue au chapitre 2.

$$M(q)\ddot{q} + F(q,\dot{q}) = G_{em}(q)u_{em} + G_a(q)u_a.$$
(3.4)

Dans cette équation, u_{em} représente les forces généralisées d'origine électromagnétique (équation de Lorentz) tandis que u_a désigne les autres forces généralisées qui s'appliquent éventuellement au système. q est un vecteur de dimension p.

Equations électriques. Chacun des circuits électriques du système peut être conceptualisé par le circuit élémentaire représenté sur la fig 3.7 où R_i représente la résistance propre du circuit et E_i représente la tension induite par les variations de flux magnétiques produits par les différents circuits (y compris l'auto-induction) et par le mouvement du système (loi d'induction électromagnétique ou loi de Lenz). Si l'on suppose que le système comporte mcircuits, on obtient un ensemble d'équations de Kirchhoff de la forme

$$R_i I_i + E_i = v_i, \quad i = 1, \dots, m.$$

Dans ces équations, v_i représente la tension aux bornes du dipôle équivalent du réseau connecté au circuit. Le plus souvent, il s'agit simplement soit d'une source de tension ou de courant, soit d'une impédance de charge. L'ensemble des équations électriques peut aussi s'écrire sous forme matricielle

$$V = RI + E \tag{3.5}$$

où R est la matrice ${\rm diag}\{R_i, i=1,m\}$ et les vecteurs V,I et E sont définis comme suit :

$$V^{T} = (v_{1}, v_{2}, \dots, v_{m}),$$

$$I^{T} = (I_{1}, I_{2}, \dots, I_{m}),$$

$$E^{T} = (E_{1}, E_{2}, \dots, E_{m}).$$

La mise en équation complète du modèle d'état d'un système électromécanique particulier requiert l'explicitation des *couplages* entre la partie mécanique (3.4) et la partie électrique (3.5), c'est à dire l'expression des forces généralisées électromagnétiques u_{em} d'une part et des tensions induites E d'autre part comme des fonctions des coordonnées mécaniques q, \dot{q} et des courants électriques I:

$$u_{em}(q,\dot{q},I), \qquad E(q,\dot{q},I).$$

Chacune des tensions E_i peut se décomposer comme suit :

$$E_i = \sum_{j=1}^m e_{ji} \tag{3.6}$$

où e_{ji} représente la tension induite par le circuit j sur le circuit i (en particulier, e_{ii} représente l'auto-induction du circuit i). Par application de la loi de Faraday, chacune de ces tensions s'exprime comme suit :

$$e_{ji} = \frac{d\phi_{ji}}{dt}$$

où ϕ_{ji} est le flux induit par le circuit j sur le circuit i. Le flux ϕ_{ji} varie en fonction du courant I_j dans le circuit inducteur et de la position q du système :

$$\phi_{ji} = \varphi_{ji}(q, I_j).$$

On en déduit que la tension e_{ji} s'écrit :

$$e_{ji} = \frac{\partial \varphi_{ji}}{\partial q} \dot{q} + \frac{\partial \varphi_{ji}}{\partial I_j} \dot{I}_j.$$
(3.7)

D'autre part, la composante d'indice k du vecteur des forces généralisées u_{em} s'écrit

$$u_{em(k)} = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial \varphi_{ji}}{\partial q_k} I_i.$$
(3.8)

Finalement, en combinant les équations (3.4),(3.5), (3.6), (3.7), (3.8), on obtient un modèle d'état comportant 2p + m variables d'état q, \dot{q}, I .

Exemple 3.2. Un système électromécanique de positionnement.

Le schéma de principe d'un électro-aimant utilisé pour un positionnement de précision est indiqué à la figure 3.8. L'électro-aimant A est muni d'une bobine inductrice dans laquelle circule un courant inducteur I. La pièce métallique B est mobile et soumise à une force de rappel linéaire par le ressort C.

FIGURE 3.8 – Système électro-mécanique de positionnement

Le flux magnétique varie proportionnellement au courant I et inversément proportionnellement à la distance z dans l'entrefer :

$$\phi(I,z) = \frac{\alpha I}{1+\beta z}.$$

La tension induite dans le circuit s'écrit donc :

$$e = \frac{d\phi}{dt} = \frac{\partial\phi}{\partial I}\frac{dI}{dt} + \frac{\partial\phi}{\partial z}\frac{dz}{dt}$$
$$= \frac{\alpha}{1+\beta z}\frac{dI}{dt} - \frac{\alpha\beta I}{(1+\beta z)^2}\frac{dz}{dt}.$$

La force d'origine électromagnétique s'exerçant sur la pièce mobile s'écrit :

$$F_{em} = \frac{1}{2}I\frac{\partial\phi}{\partial z} = -\frac{\alpha\beta}{2}\left(\frac{I}{1+\beta z}\right)^2$$

. En accord avec l'intuition physique, on observe que cette force tend à rapprocher la pièce B de l'électro-aimant quel que soit le sens du courant I.

On peut alors écrire les équations dynamiques du système.

- Equation mécanique

$$m\ddot{z} = k(z_o - z) + F_{em} \tag{3.9}$$

$$= k(z_o - z) - \frac{\alpha\beta}{2} \left(\frac{I}{1 + \beta z}\right)^2$$
(3.10)

où m désigne la masse de la pièce $B,\,k$ la constante de rappel du ressort et z_o la position du ressort au repos.

- Equation électrique

$$V = RI + e \tag{3.11}$$

$$= RI + \frac{\alpha}{1+\beta z}\dot{I} - \frac{\alpha\beta I}{(1+\beta z)^2}\dot{z}$$
(3.12)

où R désigne la résistance du circuit électrique.

En introduisant les définitions suivantes des variables d'état :

$$x_1 = z, \quad x_2 = \dot{z}, \quad x_3 = I$$

et de la variable d'entrée :

$$u = V$$
,

on obtient finalement le modèle d'état du système :

$$\dot{x}_1 = x_2,$$
 (3.13)

$$\dot{x}_2 = \frac{k}{m}(z_o - x_1) - \frac{\alpha\beta}{2m}\left(\frac{x_3}{1 + \beta x_1}\right)^2,$$
 (3.14)

$$\dot{x}_3 = \frac{\beta x_2 x_3}{1 + \beta x_1} - \frac{R}{\alpha} (1 + \beta x_1) x_3 + \frac{1 + \beta x_1}{\alpha} u.$$
(3.15)

3.4. Les machines électriques tournantes

Les machines électriques tournantes constituent une catégorie particulière de systèmes électromécaniques formés de deux corps. Le premier, appelé *rotor*, est en rotation autour d'un axe dont la position est fixe par rapport au second appelé *stator*. Ces deux corps sont munis de différents enroulements inducteurs ayant pour fonction de réaliser les conversions électromécaniques dont ces machines sont le siège.

Lorsque le stator est lui-même fixe par rapport au repère inertiel, une machine électrique ne comporte qu'un seul degré de liberté mécanique : l'angle de rotation du rotor noté θ . La partie mécanique (3.4) de la dynamique du système se réduit dès lors à une équation scalaire de la forme :

$$J\hat{\theta} + h(\hat{\theta}) = T_{em} + T_a \tag{3.16}$$

où $h(\theta)$ représente le couple de frottement, T_{em} le couple d'origine électromagnétique et T_a l'ensemble des autres couples extérieurs appliqués au rotor. D'autre part, la partie électrique de la dynamique a la forme générale (3.5) :

$$V = RI + E$$

Dans la plupart des machines courantes, lorsque les effets de saturation magnétique sont négligeables (ou négligés), on peut représenter les flux ϕ_{ij} par une expression de la forme :

$$\phi_{ij} = L_{ij}(\theta)I_i$$

qui est linéaire par rapport au courant inducteur I_i mais qui dépend de la position angulaire θ du rotor suivant une loi $L_{ij}(\theta)$ généralement périodique. On définit la matrice (symétrique) d'inductances :

$$L(\theta) \triangleq [L_{ij}(\theta)]$$

et sa dérivée par rapport à θ :

$$K(\theta) \triangleq \frac{\partial L(\theta)}{\partial \theta}.$$

Alors, l'application de la théorie qui a été présentée à la section précédente conduit à des équations générales de couplage électromécanique de la forme suivante :

$$E = L(\theta)\frac{dI}{dt} + \frac{d\theta}{dt}K(\theta)I,$$
(3.17)

$$T_{em} = \frac{1}{2} I^T K(\theta) I.$$
(3.18)

En combinant les équations (3.16),(3.5),(3.17) et (3.18) on obtient le modèle général des machines électriques :

$$\begin{split} L(\theta)\dot{I} &= -\omega K(\theta)I - RI + V, \\ \dot{\theta} &= \omega, \\ J\dot{\omega} &= \frac{1}{2}I^T K(\theta)I - h(\omega) + T_a \end{split}$$

C'est ce modèle général qui est à la base de l'établissement des modèles d'état particuliers dans les applications. Souvent, mais ce n'est pas une norme, le vecteur des tensions V ou le couple T_a sont paramétrés par des variables d'entrée convenablement choisies qui représentent l'influence extérieure sur le comportement de la machine. Voici un exemple. D'autres exemples sont donnés en exercices.

Exemple 3.3. Machine élémentaire à deux enroulements

Nous considérons une machine électrique dont le rotor et le stator sont des cylindres concentriques avec un enroulement sur le stator et un enroulement sur

3.4. Les machines électriques tournantes

le rotor. Les auto-inductances statorique et rotorique L_s et L_r sont constantes. L'inductance mutuelle L_{sr} est une fonction périodique cosinusoïdale de l'angle θ :

$$L_{sr}(\theta) = L_o \cos \theta.$$

Les matrices $L(\theta)$ et $K(\theta)$ s'écrivent comme suit :

$$L(\theta) = \begin{pmatrix} L_s & L_o \cos \theta \\ L_o \cos \theta & L_r \end{pmatrix} \quad K(\theta) = \begin{pmatrix} 0 & -L_o \sin \theta \\ -L_o \sin \theta & 0 \end{pmatrix}.$$

Les vecteurs des courants et tensions induites sont notés

$$I = \begin{pmatrix} I_s \\ I_r \end{pmatrix} \quad E = \begin{pmatrix} e_s \\ e_r \end{pmatrix}$$

Les équations de couplage électromécanique (3.17), (3.18) se particularisent comme suit :

$$e_s = L_s \dot{I}_s + L_o \cos \theta \dot{I}_r - \dot{\theta} L_o \sin \theta I_r,$$

$$e_r = L_r \dot{I}_r + L_o \cos \theta \dot{I}_s - \dot{\theta} L_o \sin \theta I_s,$$

$$T_{em} = -L_o \sin \theta I_s I_r.$$

Une telle machine peut être utilisée soit comme génératrice soit comme moteur. Dans les deux cas le circuit rotorique est alimenté par une source de courant I_r constante. Nous allons détailler ces deux possibilités et donner dans chaque cas le modèle d'état correspondant.

Fonctionnement en génératrice

La génératrice a pour fonction de transformer la puissance mécanique fournie par le couple extérieur T_a en puissance électrique débitée par le circuit statorique sur une résistance de charge R_L .

Le système possède trois variables d'état :

$$\begin{aligned} x_1 &= I_s, \\ x_2 &= \theta, \\ x_3 &= \dot{\theta}, \end{aligned}$$

et une variable d'entrée :

$$u = T_a$$
.

Le modèle d'état du système s'écrit comme suit :

$$L_s \dot{x}_1 = L_o I_r x_3 \sin x_2 - (R_s + R_L) x_1,$$

$$\dot{x}_2 = x_3,$$

$$J \dot{x}_3 = -h(x_3) - L_o I_r x_1 \sin x_2 + u.$$

FIGURE 3.9 – Machine à courant continu

Fonctionnement en moteur

Le moteur a pour fonction de transformer la puissance électrique fournie au stator par la source v_s en puissance mécanique délivrée par le couple électromagnétique T_{em} .

Le système possède trois variables d'état :

$$\begin{aligned} x_1 &= I_s, \\ x_2 &= \theta, \\ x_3 &= \dot{\theta}, \end{aligned}$$

et deux variables d'entrée :

$$u_1 = v_s,$$
$$u_2 = T_a.$$

Le modèle d'état du système s'écrit comme suit :

$$L_s \dot{x}_1 = L_o I_r x_3 \sin x_2 - R_s x_1 + u_1,$$

$$\dot{x}_2 = x_3,$$

$$J \dot{x}_3 = -h(x_3) - L_o I_r x_1 \sin x_2 + u_2$$

3.5. Les machines à courant continu

Les machines à courant continu (voir fig. 3.9) comportent généralement un enroulement statorique et un enroulement rotorique. L'enroulement du stator est le circuit inducteur dont le courant est noté I_s . L'enroulement du rotor est le circuit d'induit dont le courant est noté I_r .

Sec. 3.5

Ainsi décrite, une machine à courant continu (ou machine DC) semble tout à fait similaire à la machine élémentaire à deux enroulements que nous avons étudiée à la section précédente. Il y a cependant une différence fondamentale : une machine DC est munie d'un système de commutation qui a pour effet de modifier le couplage électromécanique. Une description détaillée de l'effet de la commutation sur les équations de couplage sort du cadre de ce livre. Nous nous limitons ici à en donner les résultats. Lorsque les effets de saturation magnétique sont négligeables et lorsque la commutation n'introduit pas de nonlinéarité significative, les équations de couplage électromécanique d'une machine DC prennent la forme multilinéaire suivante :

$$e_s = L_s \frac{dI_s}{dt},$$

$$e_r = L_r \frac{dI_r}{dt} + \frac{d\theta}{dt} K_e I_s$$

$$T_{em} = K_m I_r I_s.$$

On notera la ressemblance, mais non la similitude, de ces équations avec les équations générales (3.17), (3.18) des machines électriques sans commutation qui ont été établies précédemment. On remarquera en particulier le défaut de symétrie entre la forme de e_s et celle de e_r qui est précisément dû à la commutation.

Selon la manière dont elles sont construites et dont elles sont mises en oeuvre, les machines à courant continu peuvent être utilisées soit comme moteurs soit comme génératrices. Voici quelques exemples courants de réalisation.

Modèle général d'une machine DC

Le système possède quatre variables d'état :

$$\begin{aligned} x_1 &= \theta, \\ x_2 &= \dot{\theta}, \\ x_3 &= I_s, \\ x_4 &= I_r. \end{aligned}$$

Les entrées du système sont les tensions aux bornes du cicuit inducteur v_s et du circuit d'induit v_r , ainsi que le couple extérieur T_a :

$$u_1 = v_s,$$

$$u_2 = v_r,$$

$$u_3 = T_a.$$

Le modèle d'état du système s'écrit comme suit :

$$\dot{x}_1 = x_2,$$

$$J\dot{x}_2 = -h(x_2) + K_m x_3 x_4 + u_3,$$

$$L_s \dot{x}_3 = -R_s x_3 + u_1,$$

$$L_r \dot{x}_4 = -R_r x_4 - K_e x_2 x_3 + u_2.$$

Moteur DC commandé par le stator.

C'est un moteur DC dont le courant rotorique est fourni par une source de courant constante (voir figure 3.10) :

$$I_r = constante$$

FIGURE 3.10 – Moteur DC commandé par le stator

Le système possède trois variables d'état :

$$\begin{aligned} x_1 &= \theta, \\ x_2 &= \dot{\theta}, \\ x_3 &= I_s. \end{aligned}$$

Les entrées du système sont la tension aux bornes du circuit statorique v_s et le couple extérieur T_a :

$$u_1 = v_s,$$

$$u_2 = T_a.$$

Le modèle d'état s'écrit comme suit :

$$\dot{x}_1 = x_2,$$

 $J\dot{x}_2 = -h(x_2) + K_m I_r x_3 + u_2$
 $L_s \dot{x}_3 = -R_s x_3 + u_1.$

Moteur DC commandé par le rotor.

C'est un moteur DC dont le courant statorique est fourni par une source de courant constante (voir figure 3.11) :

$$I_s = constante$$

Le système possède trois variables d'état :

FIGURE 3.11 – Moteur DC commandé par le rotor

$$\begin{aligned} x_1 &= \theta, \\ x_2 &= \dot{\theta}, \\ x_3 &= I_r. \end{aligned}$$

Les entrées du système sont la tension aux bornes du cicuit rotorique v_r et le couple extérieur T_a :

$$u_1 = v_r,$$

$$u_2 = T_a.$$

Le modèle d'état du système s'écrit comme suit :

$$\dot{x}_1 = x_2,$$

 $J\dot{x}_2 = -h(x_2) + K_m I_s x_3 + u_2,$
 $L_r \dot{x}_3 = -R_r x_3 - K_e I_s x_2 + u_1.$

Génératrice DC.

La génératrice a pour fonction de convertir une puissance mécanique en une puissance électrique débitée par le circuit rotorique sur une impédance de charge Z_L

Sec. 3.5

quelconque. Lorsque celle-ci est résistive (R_L) , le système possède trois variables d'état (voir figure 3.12) :

$$x_1 = I_s,$$

$$x_2 = I_r,$$

$$x_3 = \omega.$$

Les entrées du système sont la tension aux bornes du circuit statorique v_s et le

FIGURE 3.12 – Génératrice DC

couple T_a :

$$u_1 = v_s,$$
$$u_2 = T_a.$$

Le modèle d'état du système s'écrit comme suit :

$$L_s \dot{x}_1 = -R_s x_1 + u_1,$$

$$L_r \dot{x}_2 = -(R_r + R_L) x_2 - K_e x_3 x_1,$$

$$J \dot{x}_3 = -h(x_3) + K_m x_1 x_2 + u_2.$$

3.6. Exercices

Exercice 3.1. Un circuit linéaire

Etablir un modèle d'état du circuit linéaire représenté à la figure 3.13 avec la tension appliquée e et la résistance ajustable r comme variables d'entrée.

Exercice 3.2. Un pont doubleur de tension

Le schéma électrique d'un pont doubleur de tension est représenté à la figure 3.14. Etablir le modèle d'état de système sous l'hypothèse que tous les dipôles sont linéaires à l'exception des diodes. $\hfill \square$

 ${\rm Figure}~3.13-Circuit~linéaire$

 $\rm Figure~3.14$ – Pont doubleur de tension

Exercice 3.3. Un transformateur

Le schéma électrique équivalent d'un transformateur est représenté à la figure 3.15.

FIGURE 3.15 - Circuit équivalent d'un transformateur

- 1. Ce réseau électrique comporte-t-il des mailles de capacités et/ou des coupes d'inductances ? Explicitez votre réponse.
- 2. Etablir le modèle d'état du système sous l'hypothèse que tous les dipôles sont linéaires.

Exercice 3.4. Un circuit avec diode tunnel

Un circuit électrique est décrit par les équations d'état suivantes :

$$C\dot{x}_1 = -h(x_1) + x_2,$$

 $L\dot{x}_2 = -x_1 - Rx_2 + u.$

 x_1 est la tension aux bornes d'une capacité linéaire, x_2 est le courant dans une inductance linéaire, $h(x_1) = x_1^3 - 10x_1^2 + 25x_1$ est la caractéristique d'une diode tunnel. Etablir le schéma du circuit.

Exercice 3.5. Un convertisseur électromécanique

Le dispositif représenté à la figure 3.16 pemet de transformer une puissance électrique fournie par la source de tension en un mouvement mécanique de translation. Il est constitué d'un noyau cylindrique en acier se déplaçant longitudinalement à l'intérieur d'un solénoïde.

Proposez un modèle d'état de ce système sous les hypothèses de modélisation suivantes :

- 1. Le mouvement du noyau est contraint à être horizontal par une glissière. Le frottement peut être considéré comme visqueux et linéaire.
- 2. Le noyau est plus court que le solénoïde.

FIGURE 3.16 – Convertisseur électromécanique

- 3. Le flux dans le solénoïde est une fonction affine de la longueur h de la partie du noyau qui se trouve à l'intérieur du solénoïde.
- 4. Le flux est une fonction monotone croissante saturée du courant.
- 5. Le ressort est linéaire.

Exercice 3.6. Un moteur d'horlogerie

Un petit moteur utilisé en horlogerie est schématisé à la figure 3.17. Le stator est muni d'un enroulement inducteur dont l'inductance $L(\theta)$ est une fonction sinusoïdale de la position angulaire θ du rotor.

FIGURE 3.17 – Moteur d'horlogerie

- 1. Proposez un modèle pour la fonction $L(\theta)$ et calculez le flux.
- 2. Etablir le modèle d'état du système sous l'hypothèse d'un frottement visqueux linéaire. Les entrées sont la tension u aux bornes de l'inducteur et le couple résistant T_a .
- 3. Quelle doit être la forme du signal d'entrée u lorsque T_a est constant pour que le rotor tourne à vitesse constante?

Exercice 3.7. Machine synchrone unipolaire diphasée.

Il s'agit d'une machine portant deux enroulements statoriques (indices a et b) disposés en quadrature et un enroulement rotorique (indice r). Les inductances propres et mutuelle des enroulements statoriques varient en fonction de la position angulaire θ du rotor suivant les lois suivantes :

$$L_a = L_o + L_1 \cos 2\theta$$
$$L_b = L_o - L_1 \cos 2\theta$$
$$L_{ab} = L_1 \sin 2\theta$$

L'inductance propre du rotor L_r est constante. Les inductances mutuelles entre le rotor et les enroulements statoriques sont aussi fonction de θ :

$$L_{ar} = L_2 \cos \theta$$
$$L_{br} = L_2 \sin \theta$$

- Etablir les équations de couplage électromécanique du système (voir Section 3.4)
- 2. Le rotor est alimenté par une source de courant constant I_r . Etablir le modèle d'état de cette machine lorsqu'elle fonctionne en moteur (inspirez vous de l'exemple 3.3).

Exercice 3.8. Machine élémentaire à deux enroulements.

On considère la machine élémentaire à deux enroulements, fonctionnant en génératrice, telle que décrite dans l'exemple 3.3. Indiquez comment se modifient les équations d'état sous les hypothèses de modélisation suivantes :

- 1. La charge du circuit statorique est capacitive
- 2. L'enroulement rotorique est fermé par un court circuit.

Exercice 3.9. Moteur DC avec auto-excitation

Un moteur à courant continu avec auto-excitation est conçu de telle manière que le courant statorique et le courant rotorique soient fournis par la même source de tension (voir figure 3.18). Etablir le modèle d'état de ce système en considérant que la source de tension u est la seule variable d'entrée de ce système.

Exercice 3.10. Génératrice DC avec auto-excitation

On considère une génératrice DC avec auto-excitation. La tension rotorique induite est, à vitesse constante, une fonction *monotone croissante bornée* du courant d'excitation $E(I_s)$ telle que E(0) > 0. La génératrice débite sur une charge capacitive. L'entrée de commande du système est la vitesse de rotation de la génératrice.

FIGURE 3.18 – Moteur DC avec auto-excitation

- 1. Proposez une forme analytique pour la fonction $E(I_s)$.
- 2. Proposez un modèle d'état pour ce système.
- 3. Justifiez l'existence de la tension résiduelle non-nulle E(0).

Exercice 3.11. Moteur DC avec charge décentrée

Un moteur DC à excitation indépendante et commandé par le courant rotorique entraîne une charge décentrée (l'axe du moteur ne passe pas par le centre de masse de la charge : il y a un effet de balourd) à travers une transmission dont la flexibilité n'est pas négligeable. Proposez un modèle d'état qui tienne compte de ces caractéristiques.

Exercice 3.12. Convertisseur DC-DC

FIGURE 3.19 – Convertisseur DC-DC

Le circuit représenté sur la figure ci-dessus schématise un convertisseur DC-DC. Le dispositif noté "S" représente un interrupteur électronique de type MOSFET qui est ouvert et fermé de manière périodique.

Etablir un modèle d'état du système sous les hypothèses de modélisation suivantes :

- a) la tension E de la batterie d'alimentation est constante
- b) les deux résistances R_1, R_2 , l'inductance L et la capacité C sont linéaires c) la variable d'entrée est la fréquence de commutation de l'interrupteur. \Box

Systèmes à compartiments

La notion de système à compartiments est utilisée pour désigner une vaste classe de systèmes dont la dynamique peut être décrite par des équations de bilan. Elle trouve des applications dans de nombreux domaines des sciences de l'ingénieur (tels que le génie chimique, le génie biomédical ou l'écologie) mais aussi en sciences économiques et sociales.

4.1. Définitions et notations

Un compartiment est un réservoir conceptuel dont le contenu (matière, énergie, monnaie, population ...) est quantifiable. On utilise la représentation symbolique indiquée à la figure 4.1 où q_{in} et q_{out} indiquent, respectivement, les flux d'alimentation et de vidange du compartiment exprimés en quantité de contenu par unité de temps. Ces flux sont toujours *positifs* par convention.

FIGURE 4.1 – Représentation symbolique d'un compartiment

Un système à compartiments est constitué par un *réseau* de compartiments interconnectés et numérotés de 1 à n. Pour fixer les idées, un exemple de système à 3 compartiments est représenté à la figure 4.2. Les flèches indiquent les flux de contenu que les divers compartiments peuvent échanger entre eux et avec l'extérieur du système.

D'une manière générale, un système à compartiments sera donc représenté par

FIGURE 4.2 – Exemple de graphe d'un système à compartiments

un *graphe orienté* dont les noeuds correspondent aux compartiments et les arcs aux flux. On introduit les notations suivantes :

- x_i désigne la quantité contenue dans le compartiment d'indice i, (i = 1, ..., n). Cette quantité est toujours *positive*. Avec un léger abus de langage, on dira aussi pour simplifier que x_i désigne le *niveau* du compartiment i.
- q_{ij} désigne le flux circulant du compartiment i vers le compartiment j, (i = 1, ..., n; j = 1, ..., n). Comme nous l'avons indiqué plus haut, c'est une variable qui est aussi toujours *positive* par convention.

Définition 4.1. Système ouvert ou fermé

On dit que le système est **ouvert** lorsqu'il existe des possibilités d'échange avec l'extérieur du système. Dans ce cas :

 q_{io} désigne le flux circulant du compartiment *i* vers l'extérieur

 q_{oi} désigne le flux circulant de l'extérieur vers le compartiment i

Dans le cas contraire, on dit que le système est **fermé** : $q_{io} = q_{oi} = 0$ pour tout *i*.

Définition 4.2. Système connecté aux entrées et sorties

Un compartiment *i* est connecté à une sortie si il y a un chemin $i \rightarrow j \rightarrow k \rightarrow \cdots \rightarrow \ell$ partant de ce compartiment et se terminant en un compartiment ℓ à partir duquel il y a un flux de sortie $q_{\ell o}$. Le système est complètement connecté aux sorties (CCS) si chaque compartiment est connecté à une sortie.

Un compartiment ℓ est connecté à une entrée si il y a un chemin $i \to j \to k \to \cdots \to \ell$ jusqu'à ce compartiment et partant d'un compartiment *i* dans lequel il y a un flux d'entrée q_{oi} . Le système est complètement connecté aux entrées (CCE) si chaque compartiment est connecté à une entrée.

4.2. Modèle d'état

L'équation de bilan de chaque compartiment (appelée aussi équation de continuité)

$$\dot{x}_i = \sum_{j=0}^n q_{ji}(t) - \sum_{j=0}^n q_{ij}(t)$$
 $i = 1, ..., n$

est l'élément de base pour l'établissement du modèle d'état d'un système à compartiments. Cette équation exprime que la variation, par unité de temps, de la quantité contenue dans un compartiment est la différence entre la somme des flux (ou débits) entrants et la somme des flux (ou débits) sortants. En pratique, bien sûr, les flux qui sont structurellement nuls ne sont pas explicités dans l'équation (4.1).

La mise en équations du modèle d'état d'un système à compartiments comporte dès lors deux aspects fondamentaux.

Tout d'abord, la structure du graphe associé au système détermine le nombre et la structure des équations de bilan (4.1); les variables x_i sont les variables d'état tandis que l'ordre du modèle est le nombre n de compartiments.

Pour compléter le modèle d'état, il faut ensuite exprimer les flux en fonction des variables d'état et des variables d'entrée :

$$q_{ij}(x,u)$$

où x et u désignent, comme d'habitude, les vecteurs d'état et d'entrée. Cette modélisation fera l'objet de la prochaine section.

La forme générale des équations d'état d'un système à compartiments est alors la suivante :

$$\dot{x}_i = \sum_{j=0}^n q_{ji}(x, u) - \sum_{j=0}^n q_{ij}(x, u)$$
 $i = 1, ..., n$

Dans ce modèle, le sens physique des variables d'état x_i est clair : ce sont les quantités contenues dans chaque compartiment. Par contre, les variables d'entrée u peuvent être de nature très variable selon les applications comme le montreront les exemples qui vont suivre.

Si l'on définit le vecteur des flux q(x, u) contenant, dans un ordre arbitraire, tous les flux $q_{ij}(x, u)$ qui ne sont pas structurellement nuls, on peut écrire aussi le modéle d'état (4.1) sous la forme matricielle plus compacte :

$$\dot{x} = Lq(x, u) \tag{4.1}$$

où L est une matrice dont les coefficients appartiennent tous au triplet (-1, 0, 1).

Exemple 4.3. Pour le système représenté à la figure 4.2, le modèle d'état s'écrit :

$$\begin{aligned} \dot{x_1} &= q_{01}(x,u) - q_{12}(x,u) - q_{13}(x,u) + q_{21}(x,u) \\ \dot{x_2} &= q_{02}(x,u) + q_{12}(x,u) - q_{21}(x,u) - q_{23}(x,u) \\ \dot{x_3} &= q_{13}(x,u) + q_{23}(x,u) - q_{30}(x,u) \end{aligned}$$

Si l'on définit le vecteur des flux :

$$q(x,u) \triangleq \begin{pmatrix} q_{01}(x,u) \\ q_{02}(x,u) \\ q_{12}(x,u) \\ q_{13}(x,u) \\ q_{21}(x,u) \\ q_{23}(x,u) \\ q_{30}(x,u) \end{pmatrix}$$

le modèle d'état s'écrit sous la forme matricielle (4.1) avec la matrice L :

4.3. Modélisation des flux

Selon les applications, les fonctions $q_{ij}(x, u)$ représentant les flux peuvent prendre des formes très variées. Elles doivent cependant être définies de manière à garantir que le système à compartiments est un système positif c'est à dire un système dont chaque variable d'état reste positive le long des trajectoires. C'est une garantie de vraisemblance du modèle puisque les variables d'état représentent des grandeurs qui n'ont pas de sens physique si elles sont négatives.

Définition 4.4. Vecteur positif et orthant positif

Un vecteur $x = (x_1, \ldots, x_n)^T$ est positif (notation $x \ge 0$) si chacune de ses composantes est un nombre réel positif : $x_i \ge 0$ pour tout i.

L'orthant positif de dimension n (noté \mathbb{R}^n_+) est l'ensemble de tous les vecteurs positifs de dimension n.

Définition 4.5. Système positif

Un système dynamique $\dot{x} = f(x, u)$ est un système positif si, pour toute entrée u(t) admissible, son état est confiné dans l'orthant positif lorsque l'état initial est positif :

$$x(t_0) \in \mathbb{R}^n_+ \text{ et } u(t) \in \mathcal{U} \Longrightarrow x(t) \in \mathbb{R}^n_+ \ \forall t \ge t_0.$$

Le théorème suivant donne une condition suffisante facile à utiliser pour vérifier qu'un système est positif.

Théorème 4.6. Un système dynamique $\dot{x} = f(x, u)$ est un système positif si f(x, u) est différentiable et si

$$x \in \mathbb{R}^n_+$$
 et $x_i = 0 \implies \dot{x}_i \ge 0 \quad \forall i. \square$

Pour garantir qu'un système à compartiments est un système positif, on impose les conditions suivantes aux fonctions de flux $q_{ij}(x, u)$:

C1. Les fonctions $q_{ij}(x, u)$ sont des fonctions positives de leurs arguments sur leur domaine de définition :

$$q_{ij}(x,u): \mathbb{R}^n_+ \times \mathbb{R}^m \to \mathbb{R}_+$$

- C2. Les fonctions $q_{ij}(x, u)$ sont des fonctions continues et dérivables de leurs arguments sur leur domaine de définition.
- C3. Comme il ne peut y avoir de flux sortant d'un compartiment vide, les fonctions $q_{ij}(x, u)$ vérifient la condition :

$$x_i = 0 \Rightarrow q_{ij}(x, u) = 0$$

Théorème 4.7. Sous les conditions C1, C2, C3, un système à compartiments $\dot{x} = Lq(x, u)$ est un système positif.

Exemple 4.8. Système hydraulique

Considérons un système hydraulique formé d'un ensemble de réservoirs situés à des altitudes différentes et dont le contenu liquide s'écoule « en cascade » des réservoirs les plus élevés vers les réservoirs les plus bas sous l'action de la gravité. Un exemple est illustré à la figure 4.3.

Il s'agit clairement d'un système à compartiments dont le graphe associé est représenté à la figure 4.4 et dont les équations de continuité s'écrivent :

$$\begin{aligned} \dot{x}_1 &= q_{01} - q_{12} - q_{13} \\ \dot{x}_2 &= q_{12} - q_{23} \\ \dot{x}_3 &= q_{13} + q_{23} - q_{30} \end{aligned}$$

Dans ces équations, les variables d'état x_1, x_2 et x_3 désignent évidemment les volumes d'eau contenus dans les réservoirs et les flux q_{ij} représentent les débits s'écoulant des réservoirs supérieurs vers les réservoirs inférieurs. Pour compléter le modèle, il faut exprimer ces flux en fonction des variables d'état et de signaux d'entrée convenablement choisis. Le débit fourni par la pompe d'alimentation du réservoir supérieur peut clairement être choisi comme variable d'entrée. Le débit de sortie q_{ij} de chaque réservoir est une fonction positive du volume x_i du réservoir.

Systèmes à compartiments

 $\rm FIGURE~4.3$ – Cascade de réservoirs

La forme de cette fonction dépend de la forme du réservoir et de la configuration de l'orifice par lequel l'eau s'écoule. Considérons le cas où les réservoirs sont de section horizontale constante et où l'écoulement s'effectue par un orifice rectangulaire situé au bas des réservoirs. La hauteur de l'eau dans un réservoir est notée :

$$h_i = \frac{x_i}{S_i}$$

où S_i désigne la section du réservoir. Selon les lois de l'hydraulique, nous savons que, lorsque la hauteur de l'eau h_i est grande par rapport à la hauteur de l'orifice, la relation entre le débit et la hauteur d'eau est proportionnelle à $\sqrt{h_i}$ (loi de Torricelli). Par contre lorsque la hauteur de l'eau est inférieure à la hauteur de l'orifice, le débit devient proportionnel à $h_i\sqrt{h_i}$ (loi de l'écoulement pour un déversoir de forme rectangulaire). On peut dès lors proposer un modèle de la forme :

$$q_{ij} = \frac{\alpha_{ij}h_i\sqrt{h_i}}{\beta_{ij} + h_i}$$

où α_{ij} et β_{ij} sont des constantes positives. En effet ce modèle vérifie bien la propriété que pour de faibles hauteurs d'eau ($h_i \ll \beta_{ij}$), le débit q_{ij} est proportionnel

FIGURE 4.4 - Graphe associé à la cascade de résevoirs

à $h_i\sqrt{h_i}$ tandis que pour des hauteurs d'eau élevées ($h_i \gg \beta_{ij}$), le débit q_{ij} est proportionnel à $\sqrt{h_i}$. On peut exprimer q_{ij} en fonction de x_i :

$$q_{ij}(x_i) = \frac{k_{ij}x_i\sqrt{x_i}}{S_i\beta_{ij} + x_i} \quad \text{avec } k_{ij} \triangleq \frac{\alpha_{ij}}{\sqrt{S_i}}$$

Alors le modèle d'état s'écrit finalement :

$$\dot{x}_{1} = -\frac{k_{12}x_{1}\sqrt{x_{1}}}{S_{1}\beta_{12} + x_{1}} - \frac{k_{13}x_{1}\sqrt{x_{1}}}{S_{1}\beta_{13} + x_{1}} + u,$$

$$\dot{x}_{2} = \frac{k_{12}x_{1}\sqrt{x_{1}}}{S_{1}\beta_{12} + x_{1}} - \frac{k_{23}x_{2}\sqrt{x_{2}}}{S_{2}\beta_{23} + x_{2}},$$

$$\dot{x}_{3} = \frac{k_{13}x_{1}\sqrt{x_{1}}}{S_{1}\beta_{13} + x_{1}} + \frac{k_{23}x_{2}\sqrt{x_{2}}}{S_{2}\beta_{23} + x_{2}} - \frac{k_{30}x_{3}\sqrt{x_{3}}}{S_{3}\beta_{30} + x_{3}}.$$
(4.2)

On observe que les fonctions $q_{ij}(x_i)$ vérifient bien les conditions de positivité C1, C2, C3.

4.4. Modèles linéaires avec commande par les alimentations extérieures

C'est la classe de modèles à compartiments que l'on rencontre le plus couramment dans la littérature. Elle est caractérisée par les définitions suivantes des flux : 1. Les flux entre compartiments et les flux de sortie du système sont des fonctions linéaires du niveau du compartiment donneur :

$$q_{ij} = k_{ij}x_i$$
 $k_{ij} > 0$ $(i = 1, ..., n; j = 0, ..., n)$

2. Les entrées u_ℓ du système sont proportionnelles aux flux d'alimentation :

$$q_{0\ell} = k_{0\ell} u_\ell$$

Dans ce cas, l'information nécessaire à l'écriture du modèle d'état est entièrement contenue dans le graphe du système. Le modèle d'état prend la forme générale d'un système linéaire (voir chapitre 1), c-à-d :

$$\dot{x} = Ax + Bu$$

mais avec les particularités structurelles suivantes :

- 1. La matrice A est une matrice de Metzler c-à-d telle que $a_{ij} \geq 0$ pour tout $i \neq j$
- 2. La matrice A est diagonalement dominante c-à-d

$$|a_{ii}| \ge \sum_{j \ne i} a_{ji}$$

3. La matrice B est une *matrice élémentaire* de plein rang, c'est à dire une matrice qui contient au plus un élément non nul par ligne et par colonne.

Exemple 4.9. Le modèle d'état linéaire du système à compartiments correspondant au graphe de la figure 4.2 s'écrit comme suit :

$$\begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{pmatrix} = \begin{pmatrix} -(k_{12} + k_{13}) & k_{21} & 0 \\ k_{12} & -(k_{21} + k_{23}) & 0 \\ k_{13} & k_{23} & -k_{30} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} + \begin{pmatrix} k_{01} & 0 \\ 0 & k_{02} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}$$
(4.3)

On observe que A est bien une matrice de Metzler diagonalement dominante et que B est une matrice élémentaire de plein rang (= 2).

Exemple 4.10. Modélisation physiologique

Les physiologistes s'intéressent souvent à décrire et à analyser la propagation de substances biologiques ou chimiques dans le corps des mammifères. Il peut s'agir de substances médicamenteuses (on parle alors d'études pharmacocinétiques) ou encore de substances toxiques absorbées volontairement ou accidentellement. Il peut s'agir aussi de substances d'origine naturelle telle que des hormones ou des protéines. Les modèles à compartiments sont fréquemment utilisés pour procéder à de telles études : le corps du mammifère est alors représenté par un ensemble plus ou moins diversifié de réservoirs interconnectés.

Considérons l'exemple de la figure 4.5. Une substance toxique (par exemple

FIGURE 4.5 – Graphe d'un modèle à compartiments en pharmacocinétique

du plomb) est ingérée par un animal et pénêtre dans le sang. Cette substance se propage progressivement dans le corps, passant du sang vers les tissus tout d'abord, vers les os ensuite. Elle est excrétée par la transpiration d'une part et par les voies urinaires d'autre part. Le modèle à compartiments linéaires correspondant au graphe de la figure 4.5 est le suivant :

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} -(k_{10} + k_{12}) & k_{21} & 0 \\ k_{12} & -(k_{20} + k_{21} + k_{23}) & k_{32} \\ 0 & k_{23} & -k_{32} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} k_{01} \\ 0 \\ 0 \end{pmatrix} u.$$

Dans ce modèle, les variables d'état x_1 , x_2 et x_3 désignent bien sûr les quantités de substance toxique dans les trois compartiments (sang, tissus et os). La variable d'entrée u désigne le flux d'ingestion par le corps.

4.5. Modèles non linéaires avec commande par les flux

Nous considérons maintenant des systèmes non linéaires à compartiments dont les flux q_{ij} peuvent être des fonctions non linéaires quelconques de leurs arguments satisfaisant les conditions C1 - C3. Nous avons déjà rencontré un modèle non

76 Chapitre 4

linéaire dans l'exemple de la cascade de réservoirs. Toutefois, dans cet exemple, les flux entre compartiments n'étaient pas fonction des variables d'entrée u_{ℓ} . Ici nous considérerons le cas où certains flux entre compartiments sont des fonctions explicites de variables d'entrée u_{ℓ} qui permettent de contrôler le débit passant entre ces compartiments. On utilise la représentation symbolique de la figure 4.6 pour indiquer la présence d'une telle variable de contrôle.

FIGURE 4.6 – Représentation symbolique d'un flux contrôlé

Exemple 4.11. Réseau de réservoirs

Considérons le système hydraulique illustré à la figure 4.7. Ce réseau de réservoirs est celui de l'exemple de la cascade de réservoirs (exemple 4.8) que nous avons rencontré précédemment, mais avec une petite modification : l'écoulement entre le réservoir 2 et le réservoir 3 n'est plus un écoulement libre mais est devenu un écoulement forcé par la pompe. Dans la mesure où cette pompe est commandable, il est naturel de considérer le débit pompé F comme une variable d'entrée.

Le modèle d'état (4.2) que nous avions obtenu pour la cascade de réservoirs est alors simplement modifié comme suit :

$$\begin{aligned} \dot{x}_1 &= -q_{12}(x_1) - q_{13}(x_1) + u_1 \\ \dot{x}_2 &= q_{12}(x_1) - u_2 \\ \dot{x}_3 &= q_{13}(x_1) - q_{30}(x_3) + u_2 \end{aligned} \tag{4.4}$$

où les variables d'état x_i sont les volumes d'eau contenus dans les réservoirs, la variable d'entrée u_1 est le débit d'alimentation du premier réservoir, la variable d'entrée $u_2 = F$ est le débit pompé du deuxième vers le troisième réservoir et les fonctions $q_{ij}(x_i)$ sont définies comme suit :

$$q_{ij}(x_i) = \frac{k_{ij}x_i\sqrt{x_i}}{S_i\beta_{ij} + x_i}$$

On observe que ce modèle d'état *ne peut pas* être celui d'un système à compartiments vérifiant les conditions C1 - C3. En effet le flux $q_{23} = u_2$ ne vérifie pas la condition C3 et le système n'est pas positif : une simulation de ce modèle peut conduire à des niveaux négatifs dans les réservoirs (même si les débits pompés restent positifs) ce qui est évidemment contradictoire avec la réalité physique. La

FIGURE 4.7 – Réseau de réservoirs

difficulté provient du fait que, avec le modèle tel qu'il est écrit, on peut pomper de l'eau dans le deuxième réservoir même quand il est vide !

On contourne aisément cette difficulté si on modélise le flux q_{23} (qui est le débit pompé F) de manière à respecter la réalité physique et à satisfaire la condition C3 comme ceci :

$$q_{23}(x_2, u_2) = \phi(x_2)u_2$$

où $\phi(x_2)$ est une fonction positive vérifiant $\phi(0) = 0$ et u_2 représente l'actionnement de la pompe. On obtient alors un système à compartiments dont le graphe est présenté à la figure 4.8 et dont le modèle d'état s'écrit :

$$\begin{aligned} \dot{x}_1 &= -q_{12}(x_1) - q_{13}(x_1) + u_1 \\ \dot{x}_2 &= q_{12}(x_1) - \phi(x_2)u_2 \\ \dot{x}_3 &= q_{13}(x_1) - q_{30}(x_3) + \phi(x_2)u_2 \end{aligned}$$

La propriété structurelle fondamentale des systèmes linéaires à compartiments se généralise aux systèmes non linéaires de la manière suivante.

78 Chapitre 4

FIGURE 4.8 – Graphe associé au réseau de réservoirs

Théorème 4.12. Soit un système non linéaire à compartiments dont les flux q_{ij} vérifient les conditions C1 - C3. Alors les flux peuvent s'écrire de la façon suivante :

$$q_{ij}(x, u) = a_{ij}(x, u)x_i \quad (i = 1, ..., n; j = 1, ..., n)$$
$$q_{i0}(x, u) = a_{i0}(x, u)x_i \quad (i = 1, ..., n)$$
$$q_{0i} = k_{0i}u_i$$

où les fonctions $a_{ij}(x, u)$ et $a_{i0}(x, u)$, définies sur l'orthant positif, sont continues.

En conséquence, le modèle d'état du système peut se mettre sous la forme suivante :

$$\dot{x} = A(x, u)x + Bu$$

où la matrice A(x, u) est une matrice de Metzler diagonalement dominante pour tout (x, u) dans l'orthant positif et B est une matrice élémentaire.

Nous terminons ce chapitre par la présentation d'un autre exemple industriel classique de système à compartiments.

Exemple 4.13. Procédé de distillation binaire

Un procédé de distillation binaire est un procédé utilisé pour séparer un mélange de deux composés chimiques, sous forme liquide, appelé *charge*. Un *dépropaniseur* ayant pour fonction de séparer le propane du butane est un exemple typique de procédé de distillation binaire dans l'industrie pétrochimique.

La séparation s'effectue par évaporation dans une enceinte fermée appelée *bal-lon* (voir figure 4.9). Au sommet du ballon sort le *distillat* contenant essentiellement

FIGURE 4.9 – Procédé de distillation

le composé léger avec un peu de composé lourd. Au fond du ballon sort le *résidu* qui contient essentiellement le composé lourd avec un peu de composé léger. Le ballon est alimenté par la charge avec un débit molaire F (mol/min). Le flux de vapeur sortant au sommet du ballon est refroidi et complètement condensé. Le liquide sortant du condenseur est partiellement recyclé vers le ballon avec un débit molaire L. Le reste, appelé *distillat*, est extrait du système. En fond de ballon, le liquide sortant est réchauffé dans un rebouilleur et la vapeur ainsi produite est recyclée dans le ballon. Le reste, appelé *résidu*, est extrait.

On présente ci-dessous un modèle simplifié de la dynamique de ce procédé de distillation en faisant les hypothèses de modélisation suivantes :

- 1. la charge est liquide et à sa température de bulle;
- les phases liquide et vapeur dans le ballon et le rebouilleur sont homogènes et à l'équilibre;
- dans le ballon la pression est constante et il n'y a pas d'accumulation de vapeur; cette hypothèse permet d'omettre les dépendances en pression dans les équations et implique que le débit de vapeur V à la sortie du ballon est égal au débit à l'entrée;
- 4. les débits d'extraction liquide sont ajustés de manière que les masses molaires totales de la phase liquide dans les trois récipients soient constantes : le distillat est donc extrait avec un débit molaire V - L, le liquide en fond

de ballon avec un débit molaire F + L et le résidu avec un débit molaire F + L - V. Evidemment, cela implique que l'inégalité 0 < L < V < F + L soit vérifiée.

Ainsi décrit, le procédé de distillation peut être vu comme un système à compartiments dont le modèle dynamique est constitué des équations de bilan de l'un des deux composés dans le ballon, dans le condenseur et dans le rebouilleur. Le graphe de ce système à compartiments est présenté à la figure 4.10 et les équations d'état sont les suivantes :

$$\dot{x}_1 = u_2 k(x_2) - u_1 \frac{x_1}{m_1} - (u_2 - u_1) \frac{x_1}{m_1}$$
$$\dot{x}_2 = u_1 \frac{x_1}{m_1} - (u_1 + u_3) \frac{x_2}{m_2} + u_2 (k(x_3) - k(x_2)) + u_3 c_f$$
$$\dot{x}_3 = (u_1 + u_3) (\frac{x_2}{m_2} - \frac{x_3}{m_3}) + u_2 (\frac{x_3}{m_3} - k(x_3))$$

Dans ces équations, les variables d'état x_i représentent la masse molaire du com-

FIGURE 4.10 – Graphe associé au procédé de distillation

posant léger dans la phase liquide du condenseur (indice 1), du ballon (indice 2) et du rebouilleur (indice 3); les paramètres m_i sont les masses molaires totales (et constantes) correspondantes : le rapport x_i/m_i est la *fraction molaire*; le paramètre c_f est la fraction molaire du composé léger dans la charge; les variables

d'entrées $u_1 = L$, $u_2 = V$ et $u_3 = F$ sont, respectivement, les débits molaires de reflux, de production de vapeur et d'alimentation. Enfin, la fonction k(x) est une relation d'équilibre liquide-vapeur permettant de relier la fraction molaire du composant léger quittant le liquide sous forme vapeur à la fraction molaire du composant dans la phase liquide.

FIGURE 4.11 – Relation d'équilibre liquide-vapeur

Cette relation s'exprime classiquement comme suit :

$$k(x_i) \triangleq \frac{\alpha x_i}{m_i + (\alpha - 1)x_i}$$

où le paramètre constant $\alpha > 1$ porte le nom de facteur de séparation. Cette fonction, définie sur l'intervalle $[0, m_i]$, vérifie k(0) = 0 et $k(m_i) = 1$ (voir figure 4.11).

4.6. Exercices

Exercice 4.1. Un système à compartiments

Soit le système dynamique suivant :

$$\dot{x}_1 = x_3 - \log(1 + x_1)$$

 $\dot{x}_2 = x_3 - x_2^2$
 $\dot{x}_3 = x_2^2 - 2x_3 + u$

Démontrer qu'il s'agit d'un système à compartiments. Dessiner le graphe associé. Calculer les flux q_{ij} , la matrice L et la matrice A(x, u).

Exercice 4.2. Un système hydraulique

Un système hydraulique comportant trois réservoirs et deux pompes est représenté à la figure 4.12.

FIGURE 4.12 – Système hydraulique

- 1. Etablir un modèle d'état du système en considérant les débits volumétriques $u_1 = F_1$ et $u_2 = F_2$ comme variables d'entrée. Montrer que le système obtenu n'est *pas* un système positif.
- 2. Proposer une autre définition de la variable d'entrée u_2 qui garantisse que le système soit positif.
- 3. Dessiner le graphe du modèle à compartiments ainsi obtenu.

FIGURE 4.13 – Réseau de cuves de mélange

Exercice 4.3. Un réseau de cuves de mélange

Le système représenté à la figure 4.13 est conçu pour mélanger trois substances X_1, X_2, X_3 dont les concentrations d'alimentation sont notées C_1, C_2, C_3 . Les volumes contenus dans les deux cuves sont notés V_1, V_2 . Les débits volumétriques des pompes sont notés Q_1, Q_2, F_1, F_2, F_3 .

1. Etablir un modèle d'état du système avec les variables d'entrée suivantes :

4.6. Exercices

 $u_1 = Q_1/V_1, u_2 = Q_2/V_2, u_3 = C_1, u_4 = C_2, u_5 = C_3$. Les débits F_i , $i = 1, \ldots, 3$, sont supposés constants.

2. Justifier la forme des variables d'entrées u_1 et u_2 .

Exercice 4.4. Modèle linéaire à compartiments

Caractériser la structure du graphe d'un modèle linéaire à compartiments dont la matrice A est :

- 1. bidiagonale
- 2. tridiagonale
- 3. triangulaire inférieure

Exercice 4.5. Modèle du procédé de distillation

Déterminer la matrice A(x, u) du modèle du procédé de distillation.

Exercice 4.6. Des réservoirs communicants

Un système à deux réservoirs communicants est représenté à la figure 4.14 Le liquide s'écoule librement entre les deux réservoirs et vers l'extérieur sous l'action de la pression hydrostatique.

FIGURE 4.14 – Réservoirs communicants

- Etablir un modèle d'état du système. Le débit fourni par la pompe d'alimentation est la seule variable d'entrée du système.
- Montrer qu'il s'agit d'un système à compartiments. Dessiner le graphe associé. Expliciter les flux entre compartiments.

 \square

84 Chapitre 4

Systèmes à compartiments

Chapitre 5

Systèmes réactionnels

La notion de système réactionnel recouvre une classe de systèmes dynamiques utilisés dans des domaines variés des sciences de l'ingénieur tels que le génie chimique, le génie biomédical, les biotechnologies ou l'écologie. Sous une hypothèse générale d'homogénéité spatiale, la dynamique des systèmes réactionnels est décrite par des équations différentielles de bilan. Ces équations sont obtenues par la combinaison d'un *réseau réactionnel* qui encode les réactions qui sont supposées se dérouler dans le système avec deux phénomènes physiques de base : les *cinétiques de réaction* d'une part et les *dynamiques d'échange* d'autre part. Ces divers éléments de la description des systèmes réactionnels seront présentés dans les sections qui vont suivre en commençant par les réseaux réactionnels.

5.1. Réseaux réactionnels

Un système réactionnel est caractérisé par un certain nombre de *réactions* entre des *espèces* de nature chimique ou biologique. Les espèces sont en nombre fini n et nous les désignons par les symboles suivants :

$$X_1, X_2, X_3, \ldots, X_n$$

Les réactions sont elles aussi en nombre fini m et se déroulent à l'intérieur d'un domaine géométriquement bien délimité. Par exemple un réacteur chimique s'il s'agit de réactions entre espèces chimiques, ou encore une niche écologique s'il s'agit d'interactions entre espèces animales. La frontière du domaine est elle aussi bien délimitée et elle sépare le système du monde extérieur.

Pour présenter la notion de réseau réactionnel, le plus simple est de commencer par un exemple.

Exemple 5.1. Réaction chimique

Le mécanisme de la réaction entre l'oxyde nitrique et l'hydrogène est décrit par le réseau réactionnel suivant qui comprend m = 4 réactions mettant en oeuvre n = 6 espèces chimiques :

$$2X_1 \longrightarrow X_2 \tag{5.1}$$

$$X_2 \longrightarrow 2X_1$$
 (5.2)

$$X_2 + X_3 \longrightarrow X_4 + X_5 \tag{5.3}$$

$$X_3 + X_5 \longrightarrow 2X_6 \tag{5.4}$$

Les six espèces sont : $X_1 = NO$, $X_2 = N_2O_2$, $X_3 = H_2$, $X_4 = N_2$, $X_5 = H_2O_2$, $X_6 = H_2O$.

Un réseau réactionnel est donc un ensemble de m réactions de la forme suivante :

$$\sum_{i=1}^{n} \gamma_{ij} X_i \longrightarrow \sum_{i=1}^{n} \delta_{ij} X_i \quad j = 1, \dots, m \quad \gamma_{ij} \ge 0 \quad \delta_{ij} \ge 0.$$

Les coefficients γ_{ij} et δ_{ij} sont des nombres réels positifs appelés *coefficients stoe-chiométriques*. Ils expriment la quantité nominale de l'espèce X_i qui est consommée ou produite par la *j*-ième réaction. Par exemple, la quatrième réaction du réseau ci-dessus signifie : une mole de X_3 combinée à une mole de X_5 produit deux moles de X_6 .

Nous introduisons les notations matricielles suivantes :

$$\Gamma = [\gamma_{ij}]$$
 matrice $n \times m$ avec éléments γ_{ij}
 $\Delta = [\delta_{ij}]$ matrice $n \times m$ avec éléments δ_{ij}

La matrice stoechiométrique est définie comme suit :

$$C = \Delta - \Gamma.$$

Le rang p de cette matrice est appelé *rang du réseau réactionnel*. Il désigne le nombre de réactions indépendantes.

Par convention, toutes les réactions s'écrivent avec une flèche allant de la gauche vers la droite. Ainsi dans l'exemple ci-dessus, la réaction réversible $2X_1 \leftrightarrows X_2$ est encodée sous la forme de deux réactions simples distinctes :

Réactifs et produits

Les *réactifs* sont les espèces X_i qui apparaissent du côté gauche des réactions avec un coefficient $\gamma_{ij} > 0$.

Les *produits* sont les espèces X_i qui apparaissent du côté droit des réactions et avec un coefficient $\delta_{ij} > 0$.

Une espèce X_i peut être à la fois réactif dans une réaction et un produit dans la même ou dans une autre réaction. C'est le cas de l'espèce X_5 dans l'exemple 5.1.

Un *produit terminal* est une espèce produite par une réaction au moins mais qui n'est réactif d'aucune réaction.

Un *réactif initial* est une espèce consommée par une réaction au moins mais qui n'est produite par aucune réaction.

A titre d'exemple, dans le réseau réactionnel (5.1) - (5.4), on peut identifier les sous-ensembles suivants :

Réactifs : X_1, X_2, X_3, X_5 Produits : X_1, X_2, X_4, X_5, X_6 Réactifs initiaux : X_3 Produits terminaux : X_4, X_6

Catalyseurs et autocatalyseurs

Comme nous venons de l'indiquer, une espèce donnée peut apparaître des deux côtés d'une même réaction. C'est par exemple le cas de l'espèce X_2 dans la réaction suivante :

$$\gamma_1 X_1 + \gamma_2 X_2 \longrightarrow \delta_2 X_2 + \delta_3 X_3$$

Si $\gamma_2 = \delta_2$, l'espèce X_2 est un *catalyseur*, c'est à dire une espèce qui n'est ni consommée, ni produite mais dont la présence est indispensable pour que la réaction ait lieu.

Si $\gamma_2 < \delta_2$, l'espèce X_2 est un *autocatalyseur*, c'est à dire une espèce qui est un catalyseur de sa propre production.

Pour les réactions catalytiques et autocatalytiques, on utilise aussi une représentation alternative qui consiste à ne pas faire figurer le catalyseur à gauche de la réaction, mais à l'indiquer sous la flèche sans coefficient et à le pondérer à droite avec le coefficient $\delta_2 - \gamma_2$:

$$\gamma_1 X_1 \xrightarrow{X_2} (\delta_2 - \gamma_2) X_2 + \delta_3 X_3$$

Parmi les exemples les plus typiques de réactions autocatalytiques on peut citer les réactions de polymérisation ou encore les réactions de croissance microbienne comme dans l'exemple ci dessous.

Exemple 5.2. Fermentation alcoolique

Le mécanisme sous-jacent aux fermentations alcooliques peut être décrit par le réseau réactionnel suivant :

$$\begin{array}{cccc} X_1 + 2.33X_2 + 0.525X_3 & \longrightarrow & 3.5X_4 + 2.5X_5 + 3.66X_6 \\ & & X_1 + 0.054X_3 & \longrightarrow & 0.36X_4 + 1.89X_5 + 0.14X_6 + 1.88X_7 \\ 1.61X_2 + 0.193X_3 + X_7 & \longrightarrow & 1.32X_4 + 0.68X_5 + 2.12X_6 \end{array}$$

Les sept espèces sont : glucose X_1 , oxygène X_2 , ammoniaque X_3 , levures X_4 , dioxide de carbone X_5 , eau X_6 , éthanol X_7 .

5.2. Modèle d'état des systèmes réactionnels

La présence de chacune des espèces à l'intérieur du système peut être quantifiée. On note $x_i(t)$ la quantité de l'espèce X_i par unité de volume dans le système. Le vecteur des concentrations, qui sera aussi le vecteur d'état du modèle est noté :

$$x(t) \triangleq (x_1(t), x_2(t), \cdots, x_n(t))^T.$$

Les vitesses de réaction, aussi appelées *cinétiques de réaction*, expriment la vitesse de consommation des réactifs et de formation des produits par unité de volume dans le système, selon le réseau réactionnel. Une vitesse de réaction r_j est associée à chaque réaction du réseau $(j = 1, \dots, m)$. Les vitesses de réaction sont fonction des concentrations x_i des différentes espèces, mais aussi éventuellement d'autres facteurs physico-chimiques qui sont en jeu dans le système tels, par exemple, la température ou la lumière. Nous considérons ici le cas particulier où elles ne dépendent que de l'état x. Le vecteur des cinétiques de réaction est noté :

$$r(x) \triangleq (r_1(x), r_2(x), \cdots, r_m(x))^T.$$

Chacune des fonctions $r_j : \mathbb{R}^n_+ \to \mathbb{R}_+$ est à valeurs positives et définie sur l'orthant positif. Il est clair qu'une réaction ne peut se dérouler que si tous les réactifs sont présents en quantité non nulle dans le système. Autrement dit, la vitesse d'une réaction est nécessairement nulle si l'un des réactifs de la réaction est absent du système. En termes mathématiques, cette condition s'exprime comme suit :

Hypothèse 5.3.

1)
$$r_j(x) \ge 0 \quad \forall j \quad \forall x \in \mathbb{R}_+,$$
 (5.5)

2)
$$r_i(x) = 0$$
 si $x_i = 0$ pour une valeur de $i \in I^{r_j}$ (5.6)

où I^{rj} désigne l'index de l'ensemble des réactifs (y compris les catalyseurs) mis en oeuvre dans la réaction d'indice j.

Sur base de la description des réseaux réactionnels et des vitesses de réaction, on vérifie alors aisément que le bilan quantitatif de chaque espèce à l'intérieur du domaine du système s'écrit comme suit :

$$\dot{x}_i = \sum_{j=1}^m (\delta_{ij} - \gamma_{ij}) r_j(x(t)) + \frac{1}{V} (Q_{0i}(t) - Q_{i0}(t)).$$

Dans cette équation, les notations δ_{ij} , γ_{ij} (coefficients stoechiométriques) et $r_j(x(t))$ (vitesses de réaction) ont été définies plus haut. La notation V désigne le volume (supposé constant) du domaine considéré. Les notations $Q_{0i}(t)$ et $Q_{i0}(t)$ désignent les flux de l'espèce X_i à travers la frontière du domaine :

 $Q_{io}(t)$ désigne le flux circulant du domaine vers l'extérieur,

 $Q_{oi}(t)$ désigne le flux circulant de l'extérieur vers le domaine.

Cette équation de continuité exprime que la variation, par unité de temps, de la concentration de l'espèce X_i résulte de deux mécanismes :

- le terme $\sum_{j=1}^{m} (\delta_{ij} \gamma_{ij}) r_j(x(t))$ exprime la différence, par unité de volume, entre la somme des quantités produites et la somme des quantités consommées dans les réactions où cette espèce X_i est respectivement un produit ou un réactif;
- le terme $Q_{0i}(t) Q_{i0}(t)$ est la différence entre le flux entrant et le flux sortant de cette même espèce X_i à travers la frontière du domaine.

On dit que le système est *fermé* lorsque $Q_{io}(t) = Q_{oi}(t) = 0$ pour tout *i* et pour tout *t*, c'est à dire lorsqu'il n'y a aucun échange avec l'extérieur. Dans le cas contraire, on dit que le système est *ouvert*.

La mise en équation du modèle d'état d'un système réactionnel comporte donc trois aspects fondamentaux.

Premièrement, le réseau réactionnel détermine le nombre de variables d'état ainsi que la structure et la valeur numérique des coefficients de la matrice stoechiométrique C.

Ensuite se pose la question de la modélisation des vitesses de réaction $r_j(x)$ en fonction des variables d'état x_i . Cette modélisation fera l'objet de la section suivante.

Il faut enfin modéliser les flux d'entrée et de sortie en fonction des variables d'état et d'entrée :

$$Q_{0i}(x,u) \qquad Q_{i0}(x,u)$$

Cette modélisation sera illustrée par les divers exemples qui seront considérés ultérieurement.

La dynamique d'un système réactionnel est alors représentée par le modèle d'état suivant :

$$\dot{x} = Cr(x) + q_{in}(x, u) - q_{out}(x, u)$$
(5.7)

où la définition des vecteurs $q_{in}(x, u)$ et $q_{out}(x, u)$ est évidente. Il est clair que ce modèle d'état n'a de sens et ne peut donc être défini que dans l'orthant positif. On montre d'ailleurs facilement que, sous l'hypothèse 5.3, le système (5.7) est un système positif qui possède une structure de système à compartiments.

Pour un système fermé, les vecteurs q_{in} et q_{out} sont identiquement nuls et le modèle d'état se réduit à l'équation :

$$\dot{x} = Cr(x).$$

Hypothèse 5.4. Principe de conservation

Le noyau de la matrice stoechiométrique contient un vecteur positif :

$$\exists \ \omega = (\omega_1, \dots, \omega_n)^T \ \omega_i > 0 \ i = 1, \dots, n$$
 tel que $\omega \in \ker C^T$.

Sous cette hypothèse on vérifie aisément que la quantité

$$z = \sum_{i=1}^{m} \omega_i x_i = \omega^T x$$

est un invariant du système (5.2) (c'est-à-dire que z(t) est constante le long des solutions du système). En effet

$$\dot{z} = \sum_{i=1}^{n} \omega_i \dot{x}_i = [\omega^T C] r(x) = 0$$

et la quantité entre crochets est nulle en vertu de l'hypothèse 5.4.

Cette hypothèse est fondamentale car elle exprime en fait que, en accord avec la réalité physique, un système réactionnel fermé est un système conservatif en ce sens que la quantité totale contenue dans le système est constante : les quantités produites compensent exactement les quantités consommées (moyennant le choix de coefficients de normalisation ω_i appropriés) ou, comme disait Lavoisier, « rien ne se perd, rien ne se crée ».

5.3. Modélisation des cinétiques de réactions

Lorsqu'une réaction obéit au *principe d'action des masses*, une expression générale classique de fonction cinétique satisfaisant les conditions (5.5) - (5.6) est la suivante :

$$r_j(x) = k_j \prod_{i \in I^{r_j}} x_i^{\nu_{i_j}}$$

où k_j est la *constante de vitesse* de la *j*-ième réaction. Le principe d'action des masses consiste donc à exprimer chaque vitesse de réaction comme étant proportionnelle au produit des concentrations des réactifs de la réaction (y compris les

5.3. Modélisation des cinétiques de réactions

catalyseurs), chaque concentration étant élevée à la puissance positive ν_{ij} appelée ordre de la *j*-ième réaction par rapport à la *i*-ième espèce. La *loi d'action des masses* correspond au cas particulier où $\nu_{ij} = \gamma_{ij} \quad \forall (i, j)$, c'est à dire où les ordres de la réaction coïncident avec les coefficients stoechiométriques des réactifs.

Il arrive souvent que le principe d'action des masses ne suffise pas à rendre compte des vitesses de réaction observées expérimentalement. On est amené alors à généraliser le modèle de la façon suivante :

$$r_j(x) = k_j \prod_{i \in I^{r_j}} \rho_{ij}(x_i)$$

où les fonctions $\rho_{ij}: \mathbb{R}_+ \to \mathbb{R}_+$ satisfont les conditions suivantes :

$$\rho_{ij}(x_i) \ge 0 \quad \forall x_i \ge 0$$
$$\rho_{ij}(0) = 0$$

Souvent, les fonctions $\rho_{ij}(x_i)$ sont monotones croissantes, comme sur la figure 5.1. Un des exemples les plus courants est connu sous le nom de cinétique de

FIGURE 5.1 – Fonction cinétique monotone croissante

Michaelis-Menten représentée par la fonction

$$\rho_{ij}(x_i) = \frac{x_i}{K_{ij} + x_i}.$$

Inhibiteurs et activateurs

Il peut arriver qu'une réaction soit ralentie par la présence d'un produit de la réaction ou d'une autre espèce quelconque apparaissant dans le réseau réactionnel. Un tel effet *inhibiteur* est modélisé en ajoutant un terme multiplicatif supplémentaire dans le modèle cinétique. Ce terme est une fonction décroissante de la concentration du composant inhibiteur. Les deux modèles suivants sont les plus fréquents :

inhibition hyperbolique :
$$ho_{ij}(x_i) = rac{K_{ij}}{K_{ij} + x_i},$$
 (5.8)

inhibition exponentielle :
$$\rho_{ij}(x_i) = e^{-(K_{ij}x_i)}$$
. (5.9)

Exemple 5.5. Considérons le réseau réactionnel suivant :

$$\begin{array}{rcl} X_1 + X_2 &\longrightarrow& 2X_3, \\ & 2X_3 &\longrightarrow& X_4. \end{array}$$
(5.10)

Supposons que les cinétiques obéissent à la loi d'action des masses et que la première réaction soit de plus inhibée par le produit X_4 de la seconde réaction selon une loi exponentielle (5.9). Les deux cinétiques de réactions auront la forme suivante :

$$r_1(x) = k_1 x_1 x_2 e^{-(Kx_4)},$$

$$r_2(x) = k_2 x_3^2.$$
(5.11)

Il peut arriver aussi qu'une espèce quelconque apparaissant dans le schéma ait un effet accélérateur sans pour autant être indispensable à la réaction (ce n'est ni un réactif ni un catalyseur de la réaction). Un tel effet *activateur* est modélisé en ajoutant un terme multiplicatif supplémentaire dans le modèle cinétique. Ce terme est une fonction croissante de la concentration du composant activateur *qui ne s'annulle pas à l'origine*.

5.4. Les réacteurs parfaitement mélangés

Les réacteurs chimiques ou biologiques parfaitement mélangés constituent l'un des exemples les plus typiques de système réactionnel. Ces réacteurs sont constitués d'un réservoir contenant un milieu réactionnel liquide qui est mélangé en permanence par un système d'agitation approprié et dont la composition est homogène. Les différents réactifs peuvent être fournis au réacteur sous forme liquide ou sous forme gazeuse. Les produits de réaction sont formés en solution dans le milieu réactionnel. Certains de ces produits peuvent être facilement gazéïfiables et s'échapper librement du réacteur sous forme gazeuse. Le milieu réactionnel est soutiré du réacteur en vue de la récolte des produits.

5.4.1. Réacteurs continus

Un réacteur parfaitement mélangé fonctionne en *mode continu* lorsque les débits d'alimentation et de soutirage sont ajustés de sorte que le volume V du milieu réactionnel soit constant. On parle alors d'un réacteur continu parfaitement

FIGURE 5.2 – Réacteur continu parfaitement mélangé

mélangé (acronyme CSTR pour *continuous stirred tank reactor*). Un exemple de réacteur de ce type est représenté à la figure 5.2. Le réservoir est muni d'une canalisation d'alimentation et d'un dispositif de trop-plein de manière à maintenir le volume constant.

On suppose que ce réacteur est le lieu d'un ensemble de m réactions impliquant n espèces chimiques X_1, X_2, \ldots, X_n . Les concentrations des différentes espèces dans le milieu réactionnel sont notées x_i . Les diverses espèces sont fournies au réacteur en solution ou en suspension dans le flux d'alimentation avec des concentrations notées x_i^{in} . Le débit volumétrique d'alimentation est noté F_{in} . Avec ces notations et définitions, les équations de bilan des différentes espèces dans le réacteur s'écrivent sous la forme matricielle suivante :

$$\dot{x}V = Cr(x)V - F_{in}x + F_{in}x^{in}$$

où C est la matrice stoechiométrique du réseau réactionnel, r(x) le vecteur des vitesses de réactions, x le vecteur des concentrations x_i et x^{in} le vecteur des concentrations d'alimentation x_i^{in} .

En définissant la variable d'entrée

$$u \triangleq \frac{F_{in}}{V}$$

qui est le débit d'alimentation par unité de volume, appelé aussi *taux de dilution* (l'inverse du taux de dilution est le temps de séjour), on obtient le modèle d'état d'un réacteur continu parfaitement mélangé :

$$\dot{x} = Cr(x) - ux + ux^{in}.$$

On observe que ce modèle possède la structure (5.7) avec les définitions suivantes :

$$q_{out}(x,u) = ux$$
 $q_{in}(x,u) = ux^{in}.$

Exemple 5.6.

Nous considérons un réacteur chimique parfaitement mélangé dans lequel les deux réactions (6.1) se déroulent simultanément dans la phase liquide avec les cinétiques (5.11). Le réacteur est alimenté par les deux réactifs initiaux X_1 et X_2 en solution avec des concentrations d'alimentation x_1^{in} et x_2^{in} .

Le modèle d'état s'écrit

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -1 & 0 \\ 2 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k_1 x_1 x_2 e^{-(Kx_4)} \\ k_2 x_3^2 \end{pmatrix} + u \begin{pmatrix} x_1^{in} - x_1 \\ x_2^{in} - x_2 \\ -x_3 \\ -x_4 \end{pmatrix}$$

où les variables d'état x_1, x_2, x_3 et x_4 représentent les concentrations des différentes espèces dans le milieu réactionnel.

5.4.2. Réacteurs à volume variable

Considérons maintenant le réacteur représenté à la figure 5.3. Il est identique au précédent sauf que le trop-plein est remplacé par une canalisation de soutirage dont le débit volumétrique F_{out} est contrôlé par une pompe. Dans le cas particulier où ce débit F_{out} peut être nul par intermittence (pas de soutirage), on dit que le réacteur fonctionne en mode discontinu. L'équation matricielle de bilan massique

FIGURE 5.3 – Réacteur à volume variable

des différentes espèces s'écrit maintenant comme suit :

$$\frac{d}{dt}(xV) = Cr(x)V - F_{out}x + F_{in}x^{in}.$$

Le volume du milieu réactionnel peut varier si les débits d'alimentation et de soutirage sont différents. Les variations de volume sont décrites par l'équation de bilan volumétrique :

$$V = F_{in} - F_{out}.$$

Si les deux débits volumétriques F_{in} et F_{out} sont choisis comme variables d'entrée u_1 et u_2 , on obtient le modèle d'état suivant :

$$\dot{x} = Cr(x) + \frac{u_1}{x_{n+1}}(x^{in} - x),$$

 $\dot{x}_{n+1} = u_1 - u_2,$

avec la variable d'état supplémentaire x_{n+1} désignant le volume V.

Il est intéressant de choisir les débits par unité de volume $u_1 = F_{in}/V$ et $u_2 = F_{out}/V$ comme variables d'entrée. Dans ce cas, le modèle d'état s'écrit

$$\dot{x} = Cr(x) + u_1(x^{in} - x),$$

 $\dot{x}_{n+1} = (u_1 - u_2)x_{n+1}.$

La première de ces deux équations décrit l'évolution de la composition du réacteur. Elle est indépendante de u_2 et x_{n+1} et elle est identique à celle que nous avions obtenue pour un réacteur à volume constant (5.4.1).

5.4.3. Réacteurs non-isothermes

La vitesse d'une réaction chimique dépend aussi de la température du milieu réactionnel. Jusqu'ici nous n'avons pas pris cette dépendance en compte dans la modélisation : nous avons implicitement supposé la température régulée à une température parfaitement constante. En l'absence d'une telle régulation, c'est la constante de vitesse qui dépend de la température et la forme générale de la vitesse de la j-ième réaction s'écrit

$$r_j(x,T) = k_j(T)\rho_j(x)$$

où T désigne la température (en Kelvin) du milieu réactionnel et la fonction $\rho_j(x)$ satisfait les conditions de l'hypothèse (5.5)-(5.6). La fonction $k_j(T)$ est positive, bornée et $k_j(0) = 0$. Un exemple typique est donné par la *loi d'Arrhenius* représentée à la figure 5.4 :

$$k_j(T) = k_{0j}exp(-\frac{E_j}{RT})$$

où k_{0j} est une constante, E_j l'énergie d'activation de la réaction et R la constante de Boltzmann. C'est une fonction monotone croissante et bornée de la température. Dans certaines applications (notamment en biotechnologie) la fonction k_j peut aussi être non monotone.

FIGURE 5.4 – Loi d'Arrhenius

Le modèle d'état d'un réacteur non isotherme est obtenu en ajoutant une équation de bilan énergétique aux équations de bilan massique et volumique. A titre d'exemple, considérons un réacteur continu muni d'un échangeur de chaleur. L'équation de bilan énergétique s'écrit comme suit :

$$\delta c_p V \dot{T} = \left(\sum_{j=1}^m \Delta H_j r_j(x,T)\right) V + \delta c_p F_{in}(T_{in} - T) + Q$$

où δ représente la densité du milieu réactionnel, c_p la chaleur spécifique, ΔH_j la chaleur de réaction, T_{in} la température du flux d'alimentation et Q le flux de chaleur échangé. Si on suppose que les paramètres δ , c_p et ΔH_j sont constants, on obtient une équation de bilan thermique :

$$\dot{T} = \sum_{j=1}^{m} h_j r_j(x, T) + d(T_{in} - T) + q$$

où $h_j = \Delta H_j/c_p \delta V$ est la chaleur spécifique de réaction, $d = F_{in}/V$ est le taux de dilution et $q = Q/c_p \delta V$.

Les paramètres h_j peuvent être positifs ou négatifs. Si h_j est négatif, la réaction en endothermique : elle consomme de la chaleur qui est apportée dans le réacteur par l'échangeur de chaleur. Si h_j est positif, la réaction est exothermique : elle génère de la chaleur dans le réacteur qui doit être refroidi par l'échangeur de chaleur.

Le flux spécifique de chaleur échangée q est lui même fonction de la température T. Un modèle simple exprime que q est proportionnel à la différence entre la température du réacteur T et la température d'entrée de l'échangeur T_w :

$$q = e(T_w - T).$$

Dans ce cas, le modèle d'état global du réacteur s'écrit :

$$\dot{x} = Cr(x) + d(x^{in} - x),$$

$$\dot{x}_{n+1} = h^T r(x) + d(T_{in} - x_{n+1}) + e(T_w - x_{n+1}).$$

avec la variable d'état supplémentaire x_{n+1} désignant la température T. Comme variables d'entrée, on peut choisir par exemple le taux de dilution d et le coefficient de transfert thermique e qui est proportionnel au débit de l'échangeur de chaleur.

5.5. Les systèmes écologiques

Le formalisme réactionnel et le modèle d'état (5.7) conviennent aussi pour la description d'une classe importante de systèmes écologiques (ou écosystèmes) dans lesquels des populations d'organismes vivants (végétaux ou animaux) se partagent un même habitat.

Le modèle mathématique d'un écosystème se présente comme un cas particulier de système réactionnel dans lequel :

- le réseau réactionnel décrit les interactions entre espèces : consommation de ressources inertes, pâturage sur des ressources végétales, prédation, etc. Les réactions sont nécessairement autocatalytiques.
- les flux d'entrée représentent la fourniture de ressources au système par des agents extérieurs et l'immigration de certaines espèces.
- les flux de sortie représentent l'émigration des espèces vers l'extérieur, la capture par des agents extérieurs (chasse, pêche, récolte, cueillette, ...) ou simplement la mortalité naturelle des espèces.

Nous commençons par un exemple simple.

Exemple 5.7. Des algues dans la lagune

Un nutriment organique provenant par exemple d'eaux ménagères résiduaires ou de fertilisants agricoles est déversé dans une lagune. Une population d'algues unicellulaires flottantes (phytoplancton) se développe à la surface de l'eau en se nourrissant de ce nutriment. Cette situation peut être schématisée par la réaction :

$$kY \longrightarrow X.$$
 (5.12)

qui exprime que, dans le mécanisme de croissance des algues, le nutriment Y est transformé en matière vivante (ou biomasse) X avec un rendement k^{-1} . Comme tous les êtres vivants, les algues de la lagune peuvent aussi mourir.

La lagune peut dès lors être considérée comme un vaste réacteur qui transforme un réactif Y (le nutriment) en un produit X (la biomasse). Le réacteur est alimenté par un flux entrant de réactif (le nutriment déversé dans la lagune) tandis que la mortalité provoque un flux sortant de produit. Sous une hypothèse d'homogénéité spatiale, la dynamique de ce réacteur est décrite par le modèle d'état

$$\dot{y} = -kr(x, y) + v,$$

$$\dot{x} = r(x, y) - dx.$$
(5.13)

où y représente la concentration en nutriment, x la densité de la population d'algues, v le débit (par unité de volume) d'alimentation de la lagune en nutriment, dx la mortalité supposée proportionnelle à la densité de population (le coefficient d est le taux spécifique de mortalité) et r(x, y) la vitesse de réaction, c'est-à-dire ici la vitesse de croissance des algues.

D'un point de vue plus général, la réaction (5.12) peut représenter la croissance d'une population quelconque d'organismes vivants (végétaux ou animaux) X qui, dans un habitat déterminé, consomme une ressource alimentaire Y. Cette ressource alimentaire peut être de la matière inerte (organique ou inorganique) comme dans l'exemple ci-dessus. Elle peut aussi être une autre espèce vivante (végétale ou animale) : on parle alors d'un modèle *proie - prédateur* dans lequel l'espèce ressource Y est la proie et l'espèce consommatrice X est le prédateur. D'évidence, cette réaction de croissance est autocatalytique puisque X représente nécessairement une population d'êtres vivants autoreproducteurs :

$$kY \xrightarrow{X} X.$$

Il est dès lors naturel de considérer que la vitesse de croissance est proportionnelle à la densité de la population prédatrice et de représenter la fonction r(x, y) par un modèle de la forme :

$$r(x,y) \triangleq \mu(x,y)x$$

où la fonction $\mu(x, y)$ est appelée *vitesse spécifique de croissance*. Cette fonction doit être définie de sorte que la vitesse de réaction vérifie les conditions (5.5) - (5.6), c'est-à-dire :

 $-\mu(x,y)$ est une fonction positive définie sur l'orthant positif :

$$\mu(x,y) \ge 0 \quad \forall (x,y) \in \mathbb{R}^2_+$$

– $\mu(x,0)=0$: il ne peut y avoir de croissance en l'absence de ressource alimentaire.

La vitesse spécifique de croissance peut dépendre de nombreux facteurs environnementaux. Deux effets non linéaires typiques sont l'effet de *satiété* et l'effet de *surpopulation*. Effet de satiété : Lorsque la ressource alimentaire est rare, on observe géné- ralement que la vitesse spécifique de croissance est une fonction croissante de la quantité de ressource disponible. Il existe cependant une limite physiologique à la vitesse de consommation de la ressource et donc à la vitesse de croissance. Ceci se modélise simplement en adoptant pour $\mu(x, y)$ une fonction croissante saturée par rapport à y, telle que la vitesse de croissance devient indépendante de y au delà d'une concentration critique y_c :

$$rac{\partial \mu(x,y)}{\partial y} \ge 0, \qquad \mu(x,y) = \mu(x,y_c) \quad \forall \ y \ge y_c.$$

Effet de surpopulation : Même quand la ressource alimentaire est surabondante, la densité de la population est généralement limitée par l'espace disponible. Ceci se modélise en imposant que la vitesse spécifique de croissance $\mu(x, y)$ soit une fonction décroissante de la densité x qui devient nulle quand la population atteint une valeur maximale x_m :

$$\frac{\partial \mu(x,y)}{\partial x} \le 0, \qquad \mu(x,y) = 0 \quad \forall \ x \ge x_m.$$

Exemple 5.8. Le modèle de Contois.

C'est un modèle classique de vitesse spécifique utilisé pour décrire la croissance de populations de micro-organismes :

$$\mu(x,y) = \frac{\mu_0 y}{y + Kx}.$$

On observe que ce modèle est bien une fonction croissante bornée de y (identique, à x fixé, au modèle de Michaelis-Menten) et décroissante (hyperbolique) de x. Cependant, les concentrations limites de satiété y_c et de surpopulation x_m sont rejetées à l'infini.

Exemple 5.9. Le modèle logistique

Il est courant d'adopter pour la vitesse spécifique de croissance une structure multiplicative de la forme :

$$\mu(x,y) = \sigma(y)\phi(x).$$

Cette structure permet de modéliser séparément les effets de satiété et de surpopulation, par exemple de la manière suivante :

$$\sigma(y) = \begin{cases} \alpha y & \forall y \le y_c \\ \alpha y_c & \forall y \ge y_c \end{cases}$$
$$\phi(x) = \begin{cases} (1 - \frac{x}{x_m}) & \forall x \le x_m \\ 0 & \forall x \ge x_m \end{cases}$$

FIGURE 5.5 – Vitesse spécifique de croissance du modèle logistique

On observe que les fonctions σ et ϕ sont linéaires et saturées (voir figure 5.5). Avec ces définitions, le modèle proie-prédateur (5.13) s'écrit, lorsque $y \leq y_c$ et $x \leq x_m$,

$$\dot{y} = -k\alpha x y (1 - \frac{x}{x_m}) + v,$$

$$\dot{x} = \alpha x y (1 - \frac{x}{x_m}) - dx.$$

Par contre, quand la ressource alimentaire est fournie au système en quantité suffisante pour en maintenir la concentration au dessus de sa valeur critique ($y(t) \ge y_c \ \forall t$), alors la dynamique de la population prédatrice devient *indépendante de la quantité de ressource alimentaire disponible* et s'écrit simplement :

$$\dot{x} = \sigma_c x (1 - \frac{x}{x_m}) - dx \tag{5.14}$$

où $\sigma_c = \alpha y_c$. La fonction $\phi(x) = (1 - x/x_m)$ est généralement dénommée *modèle logistique* dans la littérature. Par extension, le modèle (5.14) est appelé modèle logistique de croissance d'une population sur une ressource alimentaire non limitante.

Nous avons considéré jusqu'ici un modèle simple ne faisant intervenir que deux espèces X et Y. Cette description s'étend sans difficulté à des écosystèmes plus complexes dans lesquels plusieurs espèces biologiques, végétales ou animales, peuvent coexister et interagir au sein d'un même habitat. Voici un exemple.

Exemple 5.10. Un écosystème aquatique

Un écosystème aquatique, comme tout système écologique naturel, est généralement caractérisé par la cohabitation de trois types d'espèces biologiques : des

FIGURE 5.6 – Ecosystème aquatique

espèces végétales, des espèces animales herbivores et des espèces animales carnivores. A titre d'exemple, considérons un étang (voir figure 5.6) dans lequel est déversé un nutriment organique X_1 . Un population d'algues (phytoplancton) X_2 se développe par consommation de ce nutriment. Une population de petits crustacés herbivores X_3 pâture sur le phytoplancton qui constitue sa ressource alimentaire principale. Une population de poissons carnivores X_4 assure son développement et sa subsistance par la consommation des crustacés. La respiration animale consomme l'oxygène X_5 en solution dans l'eau produit par la photosynthèse. Cette description est schématisée par le réseau réactionnel suivant :

$$c_1 X_1 \quad \xrightarrow{X_2} \quad X_2 + c_4 X_5,$$

$$c_2 X_2 + c_5 X_5 \quad \xrightarrow{X_3} \quad X_3,$$

$$c_3 X_3 + c_6 X_5 \quad \xrightarrow{X_4} \quad X_4.$$

Un modèle d'état du système est établi sous les hypothèses de modélisation et avec les notations suivantes.

- Le nutriment organique est déversé avec un débit par unité de volume v.
- les trois espèces biologiques sont sujettes à une mortalité naturelle. Les coefficients de mortalité sont notés d_i , i = 2, 3, 4.
- Les poissons sont de plus l'objet d'une pêche dont l'intensité est proportionnelle à la densité de la population. Le coefficient de proportionnalité est noté d₁.
- La cinétique de croissance des algues est décrite par le modèle logistique, avec une dépendance de Michaelis Menten par rapport à la concentration en nutriment.
- Les deux cinétiques de croissance des populations animales sont décrites par le modèle de Contois avec une dépendance de Michaelis Menten par rapport

à la concentration en oxygène dissous. Le modèle d'état de cet écosystème aquatique s'écrit :

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \end{pmatrix} = \begin{pmatrix} -c_1 & 0 & 0 \\ 1 & -c_2 & 0 \\ 0 & 1 & -c_3 \\ 0 & 0 & 1 \\ c_4 & -c_5 & -c_6 \end{pmatrix} \begin{pmatrix} \frac{\mu_1 x_1 x_2}{x_1 + K_1} (1 - \frac{x_2}{x_{2c}}) \\ \frac{\mu_2 x_2 x_3}{x_2 + K_2 x_3} \frac{x_5}{x_5 + K_4} \\ \frac{\mu_3 x_3 x_4}{x_3 + K_3 x_4} \frac{x_5}{x_5 + K_5} \end{pmatrix}$$
$$- \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 & 0 \\ 0 & 0 & d_3 & 0 & 0 \\ 0 & 0 & 0 & d_1 + d_4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} + \begin{pmatrix} v \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Les variables d'état x_2, x_3, x_4 désignent les densités des trois populations biologiques tandis que x_1 et x_5 désignent respectivement les concentrations en nutriment et en oxygène dissous.

5.6. Exercices

Exercice 5.1. Un procédé chimique

Une installation de génie chimique est représentée à la figure 5.7. Une réaction réversible $A + B \leftrightarrow C$, obéissant à la loi d'action des masses, se déroule dans le réacteur. Le séparateur est supposé opérer une séparation parfaite et instantanée

FIGURE 5.7 – Un procédé chimique

5.6. Exercices

des trois espèces chimiques. Le réactif B est recyclé via une cuve de stockage. Le réactif A et le produit C sont soutirés du système. Proposer un modèle d'état du système.

Exercice 5.2. Réacteur avec alimentations séparées

Nous avons considéré dans ce chapitre que les différentes espèces qui alimentent un réacteur sont fournies ensemble par une canalisation unique (voir par exemple la figure 5.2). Un tel dispositif peut avoir l'inconvénient de voir les réactions débuter dans la canalisation d'amenée avant d'atteindre le réacteur. Cet inconvénient est évité si les réactifs sont introduits dans le réacteur par des canalisations séparées. Reconsidérons l'exemple 5.6 avec des alimentations séparées pour les deux réactifs X_1 et X_2 (voir figure 5.8) :

FIGURE 5.8 – Réacteur continu avec alimentations séparées

- 1. Etablir un modèle d'état du système si les variables d'entrée sont les deux débits volumique d'alimentation F_{01} et F_{02} .
- 2. Un cas particulier intéressant est celui ou le réacteur est alimenté à débit volumique total constant $(F_{01} + F_{02} = \text{constante})$. Seule la composition de l'alimentation est variable. En pratique cela peut être réalisé en ajustant complémentairement les deux débits F_{01} et F_{02} avec une vanne à quatre voies (voir figure 5.9) de manière que leur somme soit constante. On choisit le débit F_{01} comme unique variable d'entrée et on définit le taux de dilution constant $d = (F_{01} + F_{02})/V$. Etablir le modèle d'état du système et montrer qu'il s'écrit sous la forme (5.7).

FIGURE 5.9 – Alimentations séparées avec vanne à quatre voies

Exercice 5.3. Réactifs et produits gazeux

Le modèle d'état (5.4.1) d'un réacteur continu parfaitement mélangé peut être étendu au cas de réactifs ou de produits gazeux. Supposons tout d'abord que le réacteur soit alimenté par un réactif X sous forme gazeuse (par exemple de l'oxygène) avec un débit massique Q_{in} (voir figure 5.10). Le réactif barbote

FIGURE 5.10 – Réacteur avec réactifs et produits gazeux

dans le milieu liquide où il est partiellement dissous. L'excès de réactif non-dissous s'échappe librement du réacteur sous forme gazeuse avec un débit massique Q_{out} . La quantité de réactif mise en solution par unité de temps est donc $Q_{in} - Q_{out}$. En se basant sur la loi de Henry et en négligeant la dynamique du transfert gaz-liquide, on peut modéliser cette quantité comme étant proportionnelle au débit gazeux d'alimentation d'une part et au déficit de saturation d'autre part :

$$Q_{in} - Q_{out} = aQ_{in}(x^{sat} - x)$$

5.6. Exercices

où x désigne la concentration de l'espèce X en solution et x^{sat} la concentration de saturation de cette même espèce dans la phase liquide.

Considérons maintenant qu'un produit de réaction X (par exemple du CO_2) formé en solution est gazéifiable. Il s'échappe du milieu réactionnel avec un débit massique Q_{out} . Sous une hypothèse d'équilibre entre les phases liquide et gazeuse, on peut considérer que ce débit est proportionnel à la concentration du produit Xen solution dans le milieu réactionnel :

$$Q_{out} = dx$$

- Comme dans l'exemple 5.6, considérons un réacteur continu dans lequel les deux réactions (6.1)-(??) se déroulent simultanément dans la phase liquide avec les cinétiques (5.11). Cette fois, nous supposons cependant que le réactif X₂ et le produit X₄ sont sous forme gazeuse. On demande d'établir le modèle d'état du système sous les hypothèses de modélisation suivantes :
 - Le réacteur est alimenté par le réactif initial X_1 en solution avec un débit volumétrique F_{in} et une concentration d'alimentation x_1^{in} .
 - Le réactif X_2 est injecté dans le réacteur sous forme gazeuse. La quantité de réactif X_2 mise en solution par unité de temps est notée $aQ_{in}(x_2^{sat} x_2)$.
 - Les produits X_3 et X_4 sont formés en solution dans le milieu réactionnel. Le produit X_4 est gazéifiable et s'échappe du réacteur avec un débit gazeux dx_4 .
- 2. Si les variables d'entrée sont le débit volumétrique d'alimentation liquide par unité de volume de milieu réactionnel $u_1 = F_{in}/V$ et le débit massique d'alimentation gazeuse par unité de volume de milieu réactionnel $u_2 = Q_{in}/V$, montrer que le modèle d'état possède la structure (5.7).

Exercice 5.4. Une réacteur biochimique

Un réacteur biochimique fonctionnant en mode CSTR met en jeu trois espèces : une population bactérienne X_1 , du glucose X_2 , et du lactose X_3 .

La dynamique du réacteur est décrite par le modèle d'état suivant $(x_i$ désigne la concentration de l'espèce X_i) :

$$\begin{aligned} \dot{x}_1 &= x_1 x_2 - u x_1, \\ \dot{x}_2 &= -x_1 x_2 + x_1 x_3 - u x_2, \\ \dot{x}_3 &= -x_1 x_3 + u (c - x_3) \quad c > 0. \end{aligned}$$

- 1. Quel est le schéma réactionnel?
- 2. L'entrée u est positive : u > 0. Que représente-t-elle physiquement ?

3. Montrer que le système est positif.

Exercice 5.5. Des coccinelles et des pucerons

Montrer que le système (1.6) du chapitre 1 modélisant l'interaction entre les populations de coccinelles et de pucerons est un système réactionnel. \Box

Exercice 5.6. Une station d'épuration biologique aérobie

Une station d'épuration biologique aérobie est schématisée à la figure 5.11. Le bassin d'aération est alimenté par des eaux usées (débit F_{in}) contenant un

FIGURE 5.11 – Station d'épuration biologique aérobie

substrat organique polluant (concentration S). Ce substrat organique est dégradé par des microorganismes (concentration X) aérobies. Cette dégradation nécessite de l'oxygène dissous dans l'eau (concentration O) et produit du dioxyde de carbone (concentration C) sous forme dissoute mais qui se gazéifie aisément et sort du système sous forme gazeuse. L'oxygène dissout est fourni par un système d'aération (débit d'air Q_{in}). On fait l'hypothèse que les dynamiques de transfert entre phase gazeuse et phase liquide sont négligeables (instantanées).

La sortie du bassin d'aération est connectée à un bac de sédimentation (décantation) où la biomasse (c'est à dire la masse des microorganismes) est séparée du reste. L'eau clarifiée est évacuée du système (débit F_{out}). La biomasse est recyclée vers le bassin d'aération (débit F_R). Cependant, on prévoit la possibilité d'éliminer la biomasse en excès (débit F_S). Les niveaux dans le bassin d'aération et dans le décanteur sont supposés constants. Le bassin d'aération est supposé parfaitement mélangé. Le bassin de décantation (qui ne peut être parfaitement mélangé!) est modélisé par deux réservoirs (compartiments) parfaitement mélangés (un pour l'eau clarifiée, un pour la biomasse décantée). On suppose aussi qu'il n'y a aucune réaction biologique dans le décanteur. On demande d'établir un modèle d'état du système.

Exercice 5.7. Un système non conservatif

Soit le réseau réactionnel suivant :

$$\begin{array}{c} X_1 \longrightarrow X_2 + X_3 \\ X_3 \longrightarrow 2X_1 + X_4 \end{array}$$

- 1. Etablir le modèle d'état d'un système réactionnel fermé sous les hypothèses de modélisation suivantes : principe d'action des masses pour la première réaction avec une vitesse d'ordre 2 par rapport à tous les réactifs, cinétique de Michaelis-Menten pour la deuxième réaction avec inhibition hyperbolique par X_2 .
- 2. Montrer que le système n'est pas conservatif. Donner une justification physique.
- 3. Montrer qu'il suffit d'ajouter un réactif initial dans la première ou la deuxième réaction pour rendre le système conservatif.
Chapitre 6

Transformations d'état

Dans les chapitres qui précèdent, nous avons montré comment la démarche de modélisation peut être systématisée pour différentes classes de systèmes relevant de l'ingénierie. Pour chaque type de système, un modèle d'état général a été établi. Les variables d'état retenues dans ces modèles ont un sens physique précis : positions et vitesses pour les systèmes mécaniques, courants et tensions pour les systèmes électriques, quantités totales pour les systèmes réactionnels. Il est cependant souvent utile pour analyser le comportement d'un système dynamique de procéder à une *transformation d'état* conduisant à un modèle équivalent du système mais exprimé dans de nouvelles variables d'état.

Outre les transformations d'état, il est aussi intéressant d'utiliser des représentations graphiques qui permettent de visualiser aisément certaines particularités structurelles du système. Parmi les représentations les plus courantes, on mentionnera le *schéma fonctionnel* et le *graphe du système* dont les définitions sont données ci-dessous.

6.1. Schéma fonctionnel

Le schéma fonctionnel d'un système dynamique est un graphe orienté dont chaque noeud est constitué par l'un des deux blocs fonctionnels représentés à la figure 6.1.

- Le bloc fonctionnel Fig. 6.1 (a) représente un intégrateur dont la variable d'entrée est la dérivée de la variable de sortie.
- Le bloc fonctionnel Fig. 6.1 (b) représente une fonction f : ℝ^p → ℝ dont la variable de sortie z(t) est une fonction des variables d'entrée :

$$z(t) = f(x_1(t), x_2(t), \dots, x_p(t)).$$

FIGURE 6.1 – Blocs fonctionnels : (a) intégrateur, (b) fonction

Dans certains cas, le dessin de ce bloc est particularisé de manière à rendre explicite la fonction qu'il représente. Trois exemples sont indiqués à la figure 6.2. Le schéma fonctionnel d'un système dynamique contient nécessairement n intégrateurs dont les sorties sont les n variables d'état du système. Ces intégrateurs sont interconnectés via des blocs fonctionnels représentant les différentes fonctions apparaissant dans les équations d'état. Les arcs du schéma fonctionnel s'interprêtent comme des lignes de transmission instantanée des variables qui leur sont attachées.

FIGURE 6.2 – Exemples de blocs fonctionnels : (a) sommateur, (b) multiplieur, (c) produit par une constante

Outre leur intérêt pour l'analyse des systèmes dynamiques, les schémas fonctionnels constituent aussi un outil fondamental de programmation dans les langages standard de simulation dynamique tels que MATLAB/Simulink ou VisSim.

Exemple 6.1. Des algues dans la lagune (suite)

Au chapitre 5, nous avons établi un modèle simple décrivant la dynamique de croissance d'une population d'algues dans une lagune. En supposant que la cinétique de croissance obéit à une loi bilinéaire $r(x_1, x_2) = x_1x_2$, ce modèle

s'écrit :

$$\dot{x}_1 = -kx_1x_2 + u,$$

 $\dot{x}_2 = x_1x_2 - dx_2.$

Le schéma fonctionnel correspondant est représenté à la figure 6.3.

FIGURE 6.3 – Schéma fonctionnel du modèle de croissance d'algues

6.2. Graphe d'un système dynamique

Le graphe d'un système dynamique est, d'une certaine manière, le graphe complémentaire du schéma fonctionnel. En effet, ce sont les variables d'état x_i et les variables d'entrée u_j qui sont attachées aux noeuds du graphe tandis que les arcs (orientés) représentent les relations fonctionnelles entre ces variables.

Les règles de construction du graphe d'un système dynamique sont les suivantes :

- 1. Le graphe contient n+m noeuds étiquetés respectivement par les n variables d'état x_1, x_2, \ldots, x_n et les m variables d'entrée u_1, u_2, \ldots, u_m .
- 2. Il y a un arc orienté de x_i vers x_j (ou de u_k vers x_j) si la variable x_i (ou u_k) apparait explicitement dans l'équation de la dérivée \dot{x}_j .

Exemple 6.2. Machine électrique à courant continu

Considérons le modèle général d'une machine DC tel qu'il a été présenté au chapitre 3, section 3.5. C'est un système à quatre variables d'état et 3 variables d'entrée dont le modèle d'état s'écrit :

$$\begin{aligned} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= J^{-1}(-h(x_2) + K_m x_3 x_4 + u_3), \\ \dot{x}_3 &= L_f^{-1}(-R_f x_3 + u_1), \\ \dot{x}_4 &= L_a^{-1}(-R_a x_4 - K_e x_2 x_3 + u_2). \end{aligned}$$

Le graphe de ce système est représenté à la figure 6.4.

FIGURE 6.4 – Graphe du modèle d'état d'un moteur à courant continu

Le graphe d'un système dynamique est un outil permettant de vérifier aisément si le système considéré possède des particularités structurelles intéressantes. Nous en verrons une illustration à la section 6.7 lorsque nous étudierons les systèmes triangulaires.

6.3. Transformations linéaires d'état

Pour un système dynamique $\dot{x} = f(x, u)$, une transformation linéaire d'état est une application linéaire $T : \mathbb{R}^n \to \mathbb{R}^n$ bijective qui transforme l'état du système $x \in \mathbb{R}^n$ en un nouvel état $z \in \mathbb{R}^n$ selon la règle :

$$z = Tx$$

où T est une matrice $(n \times n)$ régulière.

Dans les nouvelles coordonnées z, le modèle d'état du système est transformé comme suit :

$$\dot{z} = T\dot{x} = Tf(x, u)$$

En exprimant que $x = T^{-1}z$ on obtient :

$$\dot{z} = g(z, u)$$
 avec $g(z, u) \triangleq Tf(T^{-1}z, u).$

En particulier, un modèle d'état linéaire $\dot{x} = Ax + Bu$ est transformé en un autre modèle linéaire :

$$\dot{z} = Fz + Gu$$
 avec $F \triangleq TAT^{-1}, G \triangleq TB.$

Exemple 6.3. Génératrice DC

Au chapitre 3 (Section 3.6), nous avons établi le modèle d'état d'une génératrice à courant continu. Lorsque la génératrice tourne à vitesse constante ω , le modèle d'état est linéaire et s'écrit

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -\frac{R_s}{L_s} & 0 \\ \frac{K_e \omega}{L_r} & -\frac{R_r + R_L}{L_r} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{L_s} \\ 0 \end{pmatrix} u$$

où les variables d'état x_1 et x_2 représentent respectivement les courants statorique et rotorique, tandis que l'entrée u est la tension appliquée au circuit statorique.

Nous définissons de nouvelles variables d'état z_1 et z_2 qui peuvent être interprétées comme les flux magnétiques ϕ_s et ϕ_r auxquels sont soumis respectivement les circuits statorique et rotorique :

$$z_1 = \phi_s = L_s x_1,$$

$$z_2 = \phi_r = L_r x_2 + K_e x_1.$$

On observe qu'il s'agit bien d'une transformation d'état linéaire :

$$T = \begin{pmatrix} L_s & 0\\ K_e & L_r \end{pmatrix}.$$

La matrice T est inversible (det $T = L_s L_r > 0$) et la transformation inverse s'écrit :

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{L_s} & 0 \\ -\frac{K_e}{L_s L_r} & \frac{1}{L_r} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}.$$

Dans les nouvelles coordonnées (z_1, z_2) , le modèle d'état s'écrit :

$$\begin{pmatrix} \dot{z}_1 \\ \dot{z}_2 \end{pmatrix} = \begin{pmatrix} -\frac{R_s}{L_s} & 0 \\ \frac{K_e \omega}{L_r} + \frac{K_e (R_r + R_L)}{L_r L_s} - \frac{K_e R_s}{L_s^2} & -\frac{R_r + R_L}{L_r} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$
$$+ \begin{pmatrix} 1 \\ \frac{K_e}{L_s} \end{pmatrix} u \qquad \Box$$

Exemple 6.4. Modèles linéaires à compartiments

On s'intéresse ici aux modèles linéaires à compartiments tels que décrits à la section 4.4. Rappelons que la forme générale des équations d'état est la suivante :

$$\dot{x}_i = \sum_{j=1}^n k_{ji} x_j - \sum_{\ell=0}^n k_{i\ell} x_i + b_i u_i, \qquad i = 1, n$$

ou sous forme matricielle :

$$\dot{x} = Ax + Bu$$

avec A une matrice de Metzler diagonalement dominante et x_i la quantité totale contenue dans le compartiment i.

On souhaite exprimer le modèle en termes de concentrations. On introduit les notations :

 V_i : volume du compartiment i,

$$a_{ij} \triangleq k_{ij}V_i,$$

 $z_i = \frac{x_i}{V_i}:$ concentration dans le compartiment *i*.

A l'aide de ces notations, on peut réécrire le modèle comme suit :

$$\dot{x}_{i} = \sum_{j=1}^{n} \frac{a_{ji}}{V_{j}} x_{j} - \sum_{l=0}^{n} \frac{a_{il}}{V_{i}} x_{i} + b_{i} u_{i},$$
$$\dot{x}_{i} = \sum_{j=1}^{n} a_{ji} z_{j} - \sum_{\ell=0}^{n} a_{i\ell} z_{i} + b_{i} u_{i},$$

et donc :

$$\dot{z}_{i} = \sum_{j=1}^{n} \frac{a_{ji}}{V_{i}} z_{j} - \sum_{\ell=0}^{n} \frac{a_{i\ell}}{V_{i}} z_{i} + \frac{b_{i}}{V_{i}} u_{i}$$

On a opéré ainsi une transformation d'état en passant des quantités totales x_i aux concentrations z_i comme variables d'état. Sous forme matricielle la transformation d'état s'écrit :

$$z = V^{-1}x$$
 avec $V \triangleq \operatorname{diag}\{V_i, i = 1, \dots, n\}$

Dans les coordonnées de concentration, le modèle devient :

$$\dot{z} = Fz + Gu$$

avec $F \triangleq V^{-1}AV$ et $G \triangleq V^{-1}B$. On peut vérifier que la matrice F^T est aussi une matrice de Metzler diagonalement dominante.

Exemple 6.5. Diagonalisation et constantes temps

On considère un modèle linéaire $\dot{x} = Ax + Bu$ dont la matrice A a toutes ses valeurs propres λ_i réelles, distinctes et non-nulles. Elle est alors diagonalisable, c'est à dire qu'il existe une matrice T telle que

$$D \triangleq TAT^{-1} = \operatorname{diag}(\lambda_i, i = 1, n)$$

Si on définit une transformation d'état :

$$z = Tx$$

le système est transformé en :

$$\dot{z} = Dz + TBu$$

ou, encore composante par composante :

$$\dot{z}_i = \lambda_i z_i + \beta_i u \quad i = 1, n$$

où β_i est la i-ème ligne de la matrice TB. Les grandeurs $\tau_i = |\lambda_i|^{-1}, i = 1, ..., n$, sont les *constantes de temps du système*.

On a ainsi remplacé le modèle initial dont les variables d'état peuvent être fortement couplées, par une collection de systèmes du premier ordre complètement séparés les uns des autres comme on peut l'observer sur le schéma fonctionnel de la figure 6.5.

Par exemple pour un moteur DC commandé par le stator (voir chapitre 3, section 3.6) avec $h(\omega) = B\omega$:

$$\frac{d}{dt} \begin{pmatrix} I_s \\ \omega \end{pmatrix} = \begin{pmatrix} -\frac{R_s}{L_s} & 0 \\ \frac{K_m I_r}{J} & -\frac{B}{J} \end{pmatrix} \begin{pmatrix} I_s \\ \omega \end{pmatrix} + \begin{pmatrix} \frac{1}{L_s} u_1 \\ \frac{1}{J} u_2 \end{pmatrix},$$

6.3. Transformations linéaires d'état

on vérifie que les constantes de temps sont

$$au_e = rac{L_s}{R_s}$$
 constante de temps électrique,
 $au_m = rac{J}{B}$ constante de temps mécanique.

Exemple 6.6. Systèmes réactionnels sous forme compartimentale

Au chapitre 5, nous avons vu que le modèle d'état des systèmes réactionnels s'écrit

$$\dot{x} = Cr(x) + q_{in}(x, u) - q_{out}(x, u).$$

Nous introduisons les notations suivantes pour les vecteurs d'entrée et de sortie :

$$q_{in}(x,u) \triangleq \left(q_{o1}(x,u), q_{o2}(x,u), \dots, q_{on}(x,u)\right)^{T},$$
$$q_{out}(x,u) \triangleq \left(q_{1o}(x,u), q_{2o}(x,u), \dots, q_{no}(x,u)\right)^{T}.$$

Supposons que le système est conservatif et que les flux q_{oi} et q_{io} vérifient les conditions C1, C2 et C3 du chapitre 4. Alors le système réactionnel est équivalent à un système à compartiments avec la transformation linéaire d'état :

$$z = Tx, \quad T \triangleq \operatorname{diag}\{\omega_2, \omega_2, \dots, \omega_n\}.$$

Pour illustrer cette propriété, considérons à nouveau l'exemple du réacteur chimique parfaitement mélangé de l'exemple 5.6. Dans ce réacteur, les deux réactions

$$\begin{array}{rcl} X_1 + X_2 &\longrightarrow& 2X_3, \\ & & 2X_3 &\longrightarrow& X_4 \end{array} \tag{6.1}$$

se déroulent simultanément dans la phase liquide avec les cinétiques

$$r_1(x) = k_1 x_1 x_2 e^{-(Kx_4)},$$

$$r_2(x) = k_2 x_3^2.$$
(6.2)

Le réacteur est alimenté par les deux réactifs initiaux X_1 et X_2 en solution avec des concentrations d'alimentation x_1^{in} et x_2^{in} .

Le modèle d'état s'écrit

$$\begin{pmatrix} \dot{x}_1\\ \dot{x}_2\\ \dot{x}_3\\ \dot{x}_4 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ -1 & 0\\ 2 & -2\\ 0 & 1 \end{pmatrix} \begin{pmatrix} k_1 x_1 x_2 e^{-(Kx_4)}\\ k_2 x_3^2 \end{pmatrix} + u \begin{pmatrix} x_1^{in} - x_1\\ x_2^{in} - x_2\\ -x_3\\ -x_4 \end{pmatrix}$$

FIGURE 6.6 – Représentation compartimentale d'un système réactionnel

où les variables d'état x_1, x_2, x_3 et x_4 représentent les concentrations des différentes espèces dans le milieu réactionnel.

On vérifie aisément que le système est conservatif avec le vecteur de normalisation $\omega = (1, 1, 1, 2)$. On définit donc la transformation linéaire d'état

 $z_1 = x_1, \quad z_2 = x_2, \quad z_3 = x_3, \quad z_4 = 2x_4.$

Dans ces nouvelles coordonnées, on obtient bien un système à compartiments dont le graphe est donné sur la Fig.6.6 et dont voici le modèle d'état :

$$\begin{pmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \\ \dot{z}_4 \end{pmatrix} = \begin{pmatrix} -k_1 z_2 \varphi - u & 0 & 0 & 0 \\ 0 & -k_1 z_1 \varphi - u & 0 & 0 \\ k_1 z_2 \varphi & k_1 z_1 \varphi & -2k_2 z_3 - u & 0 \\ 0 & 0 & 2k_2 z_3 & -u \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} + \begin{pmatrix} u x_1^{in} \\ u x_2^{in} \\ 0 \\ 0 \end{pmatrix}$$
avec
$$\varphi \triangleq \exp(-\frac{K}{z_4}).$$

$$\varphi \triangleq \exp(-\frac{K}{2}z_4).$$

6.4. Transformations non linéaires d'état

Pour un modèle d'état non linéaire $\dot{x} = f(x, u)$, il est souvent plus intéressant de considérer des transformations d'état non linéaires. Cependant, il n'est généralement pas possible de définir des transformations globales qui soient valables pour tout $x \in \mathbb{R}^n$. On s'intéresse dès lors à des transformations *locales* qui ne sont définies que sur des sous-ensembles de \mathbb{R}^n .

Définition 6.7. Transformation non linéaire d'état

Soient U et V deux sous-ensembles ouverts de \mathbb{R}^n . Une transformation non linéaire d'état est une application $T: U \rightarrow V$ qui transforme l'état du système $x \in U$ en un nouvel état $z \in V$:

$$z = T(x)$$

et qui possède les propriétés suivantes :

- a) l'application T est bijective, c'est à dire qu'il existe une fonction inverse $T^{-1}: V \to U$ telle que $x = T^{-1}(z)$,
- b) T(x) et $T^{-1}(z)$ sont des fonctions de classe C^1 , c'est à dire continues et différentiables.

La transformation d'état est dite globale si $U = V = \mathbb{R}^n$.

Une transformation T possédant ces propriétés s'appelle un difféomorphisme. La bijectivité de la transformation est nécessaire pour pouvoir inverser le changement de variables d'état et revenir dans les variables d'état initiales. La propriété b) (T et T^{-1} sont de classes C^1) est nécessaire pour pouvoir exprimer le modèle d'état dans les nouvelles coordonnées comme suit :

$$\dot{z} = \frac{\partial T}{\partial x}\dot{x} = \frac{\partial T}{\partial x}f(x,u)$$

où, en utilisant $x = T^{-1}(z)$, on obtient

$$\dot{z} = g(z, u)$$

avec :

$$g(z, u) \triangleq \left[\frac{\partial T}{\partial x}f(x, u)\right]_{x = T^{-1}(z)}$$

De manière similaire, on peut exprimer :

$$f(x, u) \triangleq \left[\frac{\partial T^{-1}}{\partial z}g(z, u)\right]_{z=T(x)}$$

Les propriétés données dans le lemme suivant peuvent être utiles pour démontrer l'existence d'une transformation d'état non linéaire.

Lemme 6.8.

- 1. Si la matrice jacobienne $[\partial T/\partial x]$ est régulière au point x_0 , alors, en application du théorème de la fonction inverse, il existe un voisinage U de x_0 tel que l'application T restreinte à U est un difféomorphisme sur U.
- 2. T est un difféomorphisme global si et seulement si :
 - a) $[\partial T/\partial x]$ est régulière pour tout x dans \mathbb{R}^n ;

b)
$$\lim_{\|x\|\to\infty} \|T(x)\| = \infty$$
.

 \square

6.5. Systèmes mécaniques

Comme nous l'avons vu au chapitre 2, le vecteur d'état d'un système mécanique est constitué de deux parties : les coordonnées de position q et les coordonnées de vitesse $v = \dot{q}$

$$x = \left(\begin{array}{c} q \\ v \end{array}\right).$$

Dans de nombreuses applications, il est intéressant de considérer différents jeux de coordonnées de position. La transformation d'état procède dès lors en deux étapes. On transforme tout d'abord les coordonnées de position :

$$p = \phi(q)$$

où $\phi: U_1 \to V_1$ est un difféomorphisme et $\partial \phi / \partial q$ est de plein rang $\forall q \in U_1$.

Le nouveau vecteur d'état est ensuite formé des nouvelles coordonnées de position p et de leurs dérivées $w = \dot{p}$:

$$z = \left(\begin{array}{c} p\\ w \end{array}\right).$$

La transformation d'état est ensuite définie comme suit :

$$z = T(x),$$
 $\begin{pmatrix} p \\ w \end{pmatrix} = \begin{pmatrix} \phi(q) \\ \frac{\partial \phi}{\partial q}v \end{pmatrix}.$

La transformation d'état inverse est :

$$x = T^{-1}(z), \quad \begin{pmatrix} q \\ v \end{pmatrix} = \begin{pmatrix} \phi^{-1}(p) \\ \left(\frac{\partial \phi}{\partial q}\right)_{q=\phi^{-1}p}^{-1} w \end{pmatrix}.$$

Exemple 6.9. Coordonnées cartésiennes et polaires

Dans la méthode décrite au chapitre 2 pour l'établissement du modèle d'état des systèmes mécaniques articulés, la position du centre de masse de chaque corps est repérée par ses coordonnées cartésiennes q = (x, y), comme indiqué sur la figure 6.7. Un autre jeu de coordonnées de position fréquemment utilisées sont les coordonnées polaires r et α : r est la distance à l'origine du centre de masse et α l'angle entre l'axe OX_b et le vecteur \overrightarrow{OG} .

La transformation qui permet de passer des coordonnées cartésiennes aux co-

FIGURE 6.7 – Coordonnées cartésiennes et coordonnés polaires

ordonnées polaires s'écrit comme suit :

$$q = \begin{pmatrix} x \\ y \end{pmatrix} \quad p = \begin{pmatrix} r \\ \alpha \end{pmatrix},$$
$$p = \phi(q) : \begin{cases} r = \sqrt{x^2 + y^2}, \\ \alpha = \arcsin \frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$

La transformation inverse $q=\phi^{-1}(p)$ s'écrit :

$$\begin{aligned} x &= r \cos \alpha, \\ y &= r \sin \alpha. \end{aligned}$$

On observe que le changement de coordonnées $p = \phi(q)$ n'est pas défini à l'origine, c'est à dire quand x = 0 et y = 0. On vérifie aussi que

$$\det[\frac{\partial \phi^{-1}}{\partial p}] = r$$

est nul quand r = 0 (c'est à dire aussi à l'origine). Il s'ensuit que la transformation de coordonnées n'est pas globale mais valable seulement sur les ensembles suivants :

$$U_1 = \mathbb{R}^2 \setminus \{(0,0)\},$$

$$V_1 = \mathbb{R}^2 \setminus \{(r,\alpha) : r = 0\}.$$

Finalement, la transformation d'état complète entre l'état (q, v) et l'état (p, w)

s'écrit comme suit :

$$\begin{split} r &= \sqrt{x^2 + y^2}, \\ \alpha &= \arccos \frac{y}{\sqrt{x^2 + y^2}} \\ \dot{r} &= \frac{x \dot{x} + y \dot{y}}{\sqrt{x^2 + y^2}}, \\ \dot{\alpha} &= \frac{x \dot{y} - \dot{x} y}{x^2 + y^2}, \end{split}$$

et la transformation inverse :

$$\begin{aligned} x &= r \cos \alpha, \\ y &= r \sin \alpha, \\ \dot{x} &= \dot{r} \cos \alpha - r \dot{\alpha} \sin \alpha, \\ \dot{y} &= \dot{r} \sin \alpha + r \dot{\alpha} \cos \alpha. \end{aligned}$$

Exemple 6.10. Coordonnées articulaires et coordonnées de tâche en robotique

Pour des robots manipulateurs comportant autant d'actionneurs que de degrés de liberté, avec joints rotoïdes, les coordonnées articulaires du Chapitre 2 constituent des coordonnées « naturelles » pour la description du système : chaque coordonnée repère la position d'un bras par rapport au précédent. Généralement, avec ces coordonnées, le modèle prend une forme assez simple. Les modèles articulaires conviennent bien pour la conception des systèmes de commande de robots.

Du point de vue de l'utilisateur intéressé par exemple par la planification de trajectoires, ce sont cependant les coordonnées de tâche, c'est à dire les coordonnées de l'effecteur qui sont intéressantes. Considérons par exemple un robot planaire à deux degrés de liberté se déplaçant dans un plan horizontal (voir figure 6.8). Les coordonnées articulaires sont les angles α_1 et α_2 , les coordonnées de tâche sont les coordonnées cartésiennes X et Y. Nous avons donc : $q = (\alpha_1, \alpha_2)$ et $p = \phi(q) = (X, Y)$. La transformation permettant de passer des coordonnées articulaires aux coordonnées de tâche s'écrit

$$X = l_1 \cos \alpha_1 + l_2 \cos(\alpha_1 + \alpha_2),$$
 (6.3)

$$Y = l_1 \sin \alpha_1 + l_2 \sin(\alpha_1 + \alpha_2).$$
 (6.4)

On vérifie aisément que cette transformation ne peut pas être injective : à une position (X, Y) de l'effecteur correspond deux positions distinctes et symétriques du robot. Pour définir correctement une transformation de coordonnées, il faut préciser les domaines U et V de définition de l'application ϕ et de son inverse.

On observe tout d'abord que l'image de l'application ϕ est nécessairement restreinte au disque des positions accessibles par le robot, c'est à dire (si $l_2 > l_1$)

FIGURE 6.8 – Coordonnées articulaires et coordonnées de tâche d'un robot à 2 degrés de liberté.

au disque de rayon $l_1 + l_2$:

$$V_1 \triangleq \{ (X, Y) : (l_2 - l_1)^2 < X^2 + Y^2 < (l_1 + l_2)^2 \}.$$

D'autre part le domaine de définition de ϕ doit être choisi de manière que l'application soit injective. Un choix possible est le suivant :

$$U_1 \triangleq \{ (\alpha_1, \alpha_2) : -\pi < \alpha_1 < \pi \quad 0 < \alpha_2 < \pi \}.$$

Avec ces définitions, on peut vérifier que l'application

$$\phi: U \longrightarrow V$$

définie par les équations (6.3)-(6.4) est un difféomorphisme.

Il reste ensuite à compléter la transformation pour l'étendre aux coordonnées de vitesses. Les vecteurs d'état en coordonnées articulaires et en coordonnées de tâche sont définis comme suit :

$$x^{T} = (\alpha_{1}, \alpha_{2}, \dot{\alpha}_{1}, \dot{\alpha}_{2}), \qquad z^{T} = (X, Y, \dot{X}, \dot{Y}).$$

La transformation d'état z = T(x) s'écrit finalement comme suit :

$$\begin{aligned} X &= l_1 \cos \alpha_1 + l_2 \cos(\alpha_1 + \alpha_2), \\ Y &= l_1 \sin \alpha_1 + l_2 \sin(\alpha_1 + \alpha_2), \\ \dot{X} &= -l_1 \dot{\alpha}_1 \sin \alpha_1 - l_2 \dot{\alpha}_1 \sin(\alpha_1 + \alpha_2) - l_2 \dot{\alpha}_2 \sin(\alpha_1 + \alpha_2), \\ \dot{Y} &= l_1 \dot{\alpha}_1 \cos \alpha_1 + l_2 \dot{\alpha}_1 \cos(\alpha_1 + \alpha_2) + l_2 \dot{\alpha}_2 \cos(\alpha_1 + \alpha_2). \end{aligned}$$

6.6. Machines électriques

Au chapitre 3, nous avons obtenu un modèle général des machine électriques tournantes de la forme suivante :

$$L(\theta)I = -\omega K(\theta)I - RI + V,$$

$$\dot{\theta} = \omega,$$

$$J\dot{\omega} = \frac{1}{2}I^{T}K(\theta)I - h(\omega) + T_{a}$$

avec

$$K(\theta) \triangleq \frac{\partial L(\theta)}{\partial \theta}.$$

Ces équations conduisent naturellement à établir des modèles d'état dont le vecteur d'état

$$x^T = (I^T, \theta, \omega)$$

est composé des courants I, de la position angulaire θ et de la vitesse angulaire ω . D'autres choix de variables d'état peuvent être utilisés pour faciliter l'étude mathématique des machines électriques. Une transformation courante consiste à remplacer les courants par les flux :

$$\phi = L(\theta)I,$$

c'est à dire à tranformer le vecteur d'état $x^T = (I^T, \theta, \omega)$ en le vecteur d'état $z^T = (\phi^T, \theta, \omega)$. Cette transformation est bien un difféomorphisme car la matrice d'inductances $L(\theta)$ est inversible pour tout θ .

Dans les nouvelles variables d'état z, les équations (6.6) se réécrivent :

$$\begin{split} \dot{\phi} &= -RL^{-1}(\theta)\phi + V, \\ \dot{\theta} &= \omega, \\ J\dot{\omega} &= \frac{1}{2}\phi^T G(\theta)\phi - h(\omega) + T_a, \\ \text{avec } G(\theta) &\triangleq L^{-1}(\theta)K(\theta)L^{-1}(\theta). \end{split}$$

6.7. Systèmes triangulaires

Un système à *une seule* entrée (système mono-entrée)

$$\dot{x} = f(x, u) \quad x \in \mathbb{R}^n \quad u \in \mathbb{R}$$
(6.5)

est dit triangulaire s'il vérifie la définition suivante.

Définition 6.11. Système triangulaire

Un système dynamique mono-entrée est triangulaire si il existe une variable d'état x_i telle que le plus court chemin allant de u à x_i dans le graphe du système est de longueur n.

Pour un système triangulaire, il est dès lors toujours possible de renuméroter les variables d'état de telle sorte que le modèle d'état s'écrive comme suit :

$$\dot{x}_{1} = g_{1}(x_{1}, x_{2}),
\dot{x}_{2} = g_{2}(x_{1}, x_{2}, x_{3}),
\vdots
\dot{x}_{i} = g_{i}(x_{1}, x_{2}, \dots, x_{i+1}),
\vdots
\dot{x}_{n-1} = g_{n-1}(x_{1}, x_{2}, \dots, x_{n}),
\dot{x}_{n} = g_{n}(x_{1}, x_{2}, \dots, x_{n}, u).$$
(6.6)

On observe que le nombre de variables d'état apparaissant à droite augmente progressivement de 2 à n (d'où le nom de forme triangulaire). En outre, l'entrée u n'apparait que dans la dernière équation.

Exemple 6.12. Robot manipulateur à un degré de liberté avec une articulation élastique

Le modèle d'état d'un robot manipulateur à un degré de liberté avec une articulation rotoïde élastique et des couples de frottement négligeables s'écrit :

$$\dot{x}_1 = x_2,
J_1 \dot{x}_2 = -mgd \sin x_1 - k(x_1 - x_3),
\dot{x}_3 = x_4,
J_2 \dot{x}_4 = k(x_1 - x_3) + u.$$
(6.7)

où

 x_1 est la coordonnée angulaire de position du bras,

 x_2 est la vitesse angulaire du bras,

 x_3 est la coordonnée de position angulaire du moteur,

 x_4 est la vitesse angulaire du moteur,

 J_1 et J_2 sont les moments d'inertie du bras et du moteur,

d est la distance entre l'articulation et le centre de masse,

k est la constante de rappel élastique,

u est le couple de commande développé par le moteur.

Le graphe du système est représenté à la figure 6.9 et on peut vérifier que les équations d'état possèdent bien la structure triangulaire voulue. $\hfill\square$

FIGURE 6.9 – Graphe du modèle d'un robot à un bras avec articulation élastique.

6.8. Forme canonique de Brunovski

Définition 6.13.

Un système dynamique mono-entrée (6.5) est sous forme canonique de Brunovski si il existe une tranformation d'état $T : U \to V$ et un intervalle ouvert $W \subset \mathbb{R}$ tels que, dans les nouvelles variables d'état z = T(x), le système prends la forme triangulaire particulière suivante :

$$\dot{z}_1 = z_2,$$

 $\dot{z}_2 = z_3,$
 \vdots
 $\dot{z}_n = \alpha(z_1, z_2, \dots, z_n, u),$

où la fonction α est continue et inversible par rapport à u sur W pour tout $z \in V$.

On observe que le système est ainsi constitué d'une chaîne d'intégrateurs de la forme

$$\dot{z}_i = z_{i+1}$$
 $i = 1, \dots, n-1$

et que toute les nonlinéarités du système sont concentrées dans la seule fonction nonlinéaire scalaire $\alpha(z_1, z_2, \ldots, z_n, u)$. La forme canonique de Brunovski peut aussi être schématisée comme indiqué sur le schéma fonctionnel de la figure 6.10. La forme de Brunovski est intéressante parce qu'elle permet d'effectuer facilement des planifications de trajectoire comme nous le verrons au chapitre 10.

FIGURE 6.10 – Schéma fonctionnel de la forme canonique de Brunovski

Exemple 6.14. Un réacteur chimique

On considère un réacteur continu parfaitement mélangé et à volume constant dans lequel se déroule une réaction chimique irréversible mettant en oeuvre deux espèces X_1 et X_2 :

$$X_1 \longrightarrow X_2.$$

Le réacteur est alimenté uniquement avec l'espèce X_1 , à concentration c constante. La variable d'entrée est le débit volumétrique spécifique d'alimentation du réacteur. La cinétique obéit à la loi d'action des masses. Selon les principes de modélisation que nous avons établi au chapitre 5, on obtient le modèle d'état bilinéaire suivant :

$$\dot{x}_1 = -kx_1 + u(c - x_1)$$

 $\dot{x}_2 = kx_1 - ux_2.$

On définit la transformation d'état z = T(x) suivante :

$$z_1 = \frac{x_2}{c - x_1},$$

$$z_2 = \frac{kx_1(c - x_1 - x_2)}{(c - x_1)^2}$$

Le domaine U et l'image V de l'application $T: U \longrightarrow V$ sont définis comme suit :

$$U = \{(x_1, x_2) : x_1 > 0, x_2 > 0, x_1 + x_2 < c\},\$$

$$V = \{(z_1, z_2) : 0 < z_1 < 1, z_2 > 0\}.$$

On peut alors montrer que la transformation d'état z = T(x) ainsi définie est bien un difféomorphisme dont l'inverse est :

$$x_1 = \frac{cz_2}{k(1-z_1)+z_2},$$

$$x_2 = \frac{ckz_1(1-z_1)}{k(1-z_1)+z_2}.$$

Dans les nouvelles coordonnées, le modèle d'état est sous forme canonique de Brunovski :

$$z_1 = z_2,$$

$$\dot{z}_2 = -\left(z_2 + \frac{(k+1)z_2^2}{k(1-z_1)}\right) + (k(1-z_1) + z_2)u.$$

La fonction α est inversible par rapport à u sur W.

Cet exemple montre qu'il n'est pas évident de déterminer a priori si un système dynamique donné peut être mis sous forme de Brunovski ni de déduire la transformation d'état adéquate. Cependant, si le système concerné est déjà donné sous forme triangulaire, une condition suffisante pour le mettre sous forme de Brunovski s'exprime comme suit.

Lemme 6.15.

Un système dynamique triangulaire décrit par le modèle d'état (6.6) peut être mis sous forme canonique de Brunovski au voisinage de (x_0, u_0) si les inégalité suivantes :

$$\frac{\partial g_i}{\partial x_{i+1}} \neq 0 \quad i = 1, \dots, n-1,$$
$$\frac{\partial g_n}{\partial u} \neq 0,$$

sont satisfaites en (x_0, u_0) .

Exemple 6.16. *Robot manipulateur à un degré de liberté avec articulation élastique (suite)*

On considère à nouveau le modèle (6.7) de l'exemple 6.12. On vérifie aisément que les conditions du Lemme 6.15 sont satisfaites pour tout $x \in \mathbb{R}^4$ et conduisent naturellement à la transformation d'état :

$$z_1 = x_1$$

$$z_2 = x_2$$

$$z_3 = -J_1^{-1} [mgd\sin x_1 + k(x_1 - x_3)]$$

$$z_4 = -J_2^{-1} [mgdx_2\cos x_1 + k(x_2 - x_4)].$$

La transformation inverse s'écrit :

$$x_1 = z_1$$

$$x_2 = z_2$$

$$x_3 = (mgdk^{-1}\sin z_1 + z_1 + J_1k^{-1}z_3)$$

$$x_4 = (mgdk^{-1}z_2\cos z_1 + z_2 + J_2k^{-1}z_4)$$

On observe qu'il s'agit d'un difféomorphisme global de \mathbb{R}^4 dans \mathbb{R}^4 . Avec les nouvelles variables d'état le modèle s'écrit sous forme de Brunovski :

$$\begin{aligned} \dot{z}_1 &= z_2 \\ \dot{z}_2 &= z_3 \\ \dot{z}_3 &= z_4 \\ \dot{z}_4 &= J_2^{-1} [mgd(z_2^2 \sin z_1 - z_3 \cos z_1) - kz_3] \\ &+ k J_2^{-2} [mgd \sin z_1 + J_1 z_3 - u] \end{aligned}$$

On observe aussi que la fonction α est inconditionnellement inversible sur \mathbb{R} par rapport à u. La forme de Brunovski est donc ici globalement valide.

Pour des systèmes qui ne sont pas donnés sous forme triangulaire mais qui sont affines en l'entrée, le lemme suivant exprime des conditions utiles pour trouver la transformation d'état.

Lemme 6.17. Un système affine en l'entrée

$$\dot{x} = f(x) + g(x)u \quad x \in \mathbb{R}^n \quad u \in \mathbb{R}$$

peut être mis sous forme canonique de Brunovski dans un domaine $U \subset \mathbb{R}^n$ si il existe une transformation d'état z = T(x) vérifiant les conditions suivantes :

$$T_{i+1}(x) = \frac{\partial T_i}{\partial x} f(x) \quad i = 1, 2, \dots, n-1,$$

$$\frac{\partial T_i}{\partial x} g(x) = 0 \quad i = 1, 2, \dots, n-1,$$

$$\frac{\partial T_n}{\partial x} g(x) \neq 0,$$

pout tout $x \in U$.

Exemple 6.18. Un réacteur chimique (suite)

Nous montrons comment utiliser le lemme précédent pour retrouver la transformation d'état qui a été postulée sans justification dans l'exemple 6.14. Le modèle d'état s'écrit :

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -x_1 \\ x_1 \end{pmatrix} + \begin{pmatrix} c - x_1 \\ -x_2 \end{pmatrix} u \triangleq f(x) + g(x)u$$

On considère tout d'abord l'équation aux dérivées partielles :

$$\frac{\partial T_1}{\partial x}g(x) = 0 \quad \Rightarrow \quad \frac{\partial T_1}{\partial x_1}(c - x_1) = \frac{\partial T_1}{\partial x_2}x_2$$

dont une solution est :

$$T_1(x) = \frac{x_2}{c - x_1}$$

On calcule ensuite :

$$T_2(x) = \frac{\partial T_1}{\partial x} f(x) \Rightarrow T_2(x) = \frac{kx_1(c - x_1 - x_2)}{(c - x_1)^2}$$

On détermine le domaine U et l'image V de l'application $T: U \to V$ ainsi définie. On vérifie enfin que la condition $(\partial T_2/\partial x)g(x) \neq 0$ est satisfaite sur U :

$$\frac{\partial T_2}{\partial x}g(x) = \frac{c(c-x_1-x_2)}{(c-x_1)^2} \neq 0 \qquad \Box$$

6.9. Exercices

Exercice 6.1. Un four de verrerie

Au Chapitre 1, Exemple 1.1 et Exercice 1.1, nous avons proposé trois jeux différents de variables d'état pour un modèle de four de verrerie. Déterminer les trois transformations d'état correspondantes et indiquer leurs domaines de définition.

Exercice 6.2. Un relais electromagnétique

Soit le relais électromagnétique dont le modèle d'état à été établi au Chapitre 3, Exemple 3.2.

- 1. On choisit les nouvelles variables d'état suivantes : $y_1 = z$, $y_2 = \dot{z}$, $y_3 = \phi(I, z)$. Montrer qu'il s'agit d'une transformation d'état valide. Etablir le modèle d'état dans ces nouvelles variables.
- 2. Montrer que le système peut être mis sous forme canonique de Brunovski. Déterminer la transformation d'état et donner une interprétation physique des nouvelles variables d'état.

Exercice 6.3. Une cage d'ascenseur

Sur la figure ci-contre, on a représenté une cage d'ascenseur suspendue à un cable élastique de masse négligeable.

Notations :

- y =longueur du câble
- ω = vitesse angulaire de la poulie
- R = rayon de la poulie
- m = masse de la cage

La tension dans le câble est modélisée par la loi de Hooke :

$$T = \frac{k(y-z)}{z}$$

où z est une variable d'état auxiliaire dont la dérivée est la vitesse périphérique de la poulie : $\dot{z} = R\omega$.

- 1. Etablir un modèle détat avec 4 variables d'état : y, \dot{y}, z, ω . Le frottement est négligé. La variable d'entrée est le couple de rotation u appliqué à la poulie.
- 2. Montrer que le système peut être mis sous forme de Brunovski. Expliciter la transformation d'état.

Exercice 6.4. Des coccinelles et des pucerons

Montrer qu'il existe une transformation d'état telle que le système (1.6) du chapitre 1 modélisant l'interaction entre les populations de coccinelles et de pucerons peut être mis sous la forme d'un système à compartiments. Dessiner le graphe associé. Déterminer les flux q_{ij} , la matrice L et la matrice A(x, u).

Exercice 6.5. Un réacteur biochimique

Soit un réacteur continu parfaitement mélangé et à volume constant dans lequel se déroule une réaction chimique autocatalytique irréversible mettant en oeuvre deux espèces A et B:

$$A + B \longrightarrow 2B$$
 (6.8)

Le réacteur est alimenté uniquement avec l'espèce A, à concentration constante. La variable d'entrée est le débit volumétrique d'alimentation du réacteur. Les cinétiques obéissent à la loi d'action des masses.

- 1. Etablir les équations d'état du système.
- 2. Montrer que le système est conservatif.
- 3. Déterminer une transformation d'état qui mette le système sous forme canonique de Brunowski.
- 4. Déterminer la transformation d'état qui met le système sous la forme d'un système à compartiments.
- 5. Mêmes questions si la réaction est réversible.

Exercice 6.6. Un four électrique

Un four électrique est chauffé par une thermistance comme indiqué sur la figure ci-dessous.

1. Etablir un modèle d'état du système sous les hypothèses de modélisation suivantes :

a) La thermistance est une résistance dont la valeur varie avec la temperature suivant la relation de Reinhart-Hart :

$$\frac{1}{T} = a + b \ln R + c (\ln R)^3$$

où a, b, c sont des constantes caratéristiques positives fournies par le constructeur.

- b) Comme représenté sur la figure, la thermistance est alimentée par une batterie de tension constante E via une inductance (linéaire) constante et une résistance (linéaire) règlable qui est l'entrée du système.
- c) Le four est chauffé par la thermistance. La perte de chaleur à travers les parois du four est proportionnelle à la différence entre la température à l'intérieur du four et la température extérieure qui est supposée constante.
- 2. Montrer que le système peut être mis sous forme de Brunovski. Expliciter la transformation d'état.

Exercice 6.7. Un système à deux compartiments

Soit le système *linéaire* à deux compartiments dont le graphe est indiqué à la figure 6.11. Déterminer la transformation d'état qui diagonalise le système. Expliciter les constantes de temps.

 $\label{eq:FIGURE} FIGURE \ \textbf{6.11} - \ \textbf{Graphe} \ \textbf{d'un système} \ \textbf{a} \ \textbf{deux compartiments}$ ments

Chapitre 7

Equilibres et invariants

Dans les chapitres 7, 8 et 9, nous allons étudier le comportement des systèmes dynamiques $\dot{x} = f(x, u)$ lorsque les variables d'entrée sont constantes. Dans le présent chapitre nous examinons tout d'abord les conditions d'existence d'états d'équilibre et de sous ensembles invariants dans l'espace d'état.

7.1. Equilibres : définition et exemples

Définition 7.1. Equilibre

Le couple (\bar{x}, \bar{u}) est un équilibre du système $\dot{x} = f(x, u)$ si

$$f(\bar{x}, \bar{u}) = 0.$$

Cette définition implique que si les signaux d'entrée sont constants à partir de l'instant t_0 :

$$u(t) = \bar{u} \quad \forall t \ge t_0$$

et si l'état du système est égal à \bar{x} à l'instant t_0 :

$$x(t_0) = \bar{x}$$

alors l'état du système reste constant et égal à \bar{x} à tous les instants ultérieurs :

$$x(t) = \bar{x} \quad \forall t \ge t_0.$$

Dans certains ouvrages, en particulier ceux relatifs à l'ingénierie des procédés, un équilibre s'appelle aussi un *régime permanent*. De même, l'état \bar{x} d'un équilibre (\bar{x}, \bar{u}) est parfois appelé point d'équilibre ou point *fixe* ou encore point *stationnaire*.

Définition 7.2. Equilibre isolé

Le couple (\bar{x}, \bar{u}) est un équilibre *isolé* si, pour \bar{u} fixé, il existe un voisinage de \bar{x} dans \mathbb{R}^n ne contenant aucun autre vecteur \tilde{x} tel que $f(\tilde{x}, \bar{u}) = 0$.

Les exemples qui suivent illustrent la grande diversité des configurations d'équilibre possibles à partir de modèles simples de systèmes caractérisés par des équations de bilan.

Exemple 7.3. Réservoir à écoulement libre

On considère un réservoir de section constante alimenté par une pompe dont le débit volumétrique u est la variable d'entrée tandis que l'écoulement est libre (Fig.7.1).

FIGURE 7.1 – (a) Réservoir à écoulement libre (b) Diagramme d'équilibre

Le modèle d'état de ce système a été établi au chapitre 4 :

$$\dot{x} = -\frac{kx\sqrt{x}}{S\beta + x} + u,$$

où x représente le volume du liquide contenu dans le réservoir. Les équilibres du système vérifient la relation $k\bar{x}\sqrt{\bar{x}} = \bar{u}(S\beta + \bar{x})$ dont le graphe dans \mathbb{R}^2 porte le nom de *diagramme d'équilibre* (Fig. 7.1). On observe sur ce graphe qu'il y a un état d'équilibre \bar{x} distinct pour chaque valeur distincte de \bar{u} et que tous les équilibres sont isolés.

Exemple 7.4. Réservoir à écoulement forcé

Considérons maintenant le même réservoir que précédemment mais en supposant que l'écoulement est forcé par une pompe dont le débit volumétrique F_0 est constant (Fig. 7.2). Le modèle d'état devient alors :

$$\dot{x} = -F_0 + u.$$

FIGURE 7.2 – (a) Réservoir à écoulement forcé. (b) Diagramme d'équilibres.

Comme dans l'exemple précédent, le système est à l'équilibre lorsque le débit d'entrée compense exactement le débit de sortie :

$$\bar{u} = F_0.$$

Cette fois, il n'y a qu'une seule valeur possible de l'entrée u qui donne lieu à un équilibre. Par contre, l'état d'équilibre \bar{x} peut prendre n'importe quelle valeur positive. Le diagramme d'équilibre est illustré à la figure 7.2. On observe que les équilibres ne sont pas isolés puisque \bar{x} est indéterminé.

Exemple 7.5. Cuve de mélange à volume constant

Considérons une cuve de mélange de volume V constant et parfaitement mélangée (Fig.7.3(a)). Le débit d'alimentation transporte une substance en solution

FIGURE 7.3 – (a) Cuve de mélange à volume constant. (b) Diagramme d'équilibres.

(par exemple un colorant) de concentration x_{in} . Le débit d'alimentation F est contrôlé par une vanne de caractéristique :

$$F = ku + b \quad k > 0, \quad b > 0,$$

où u désigne l'ouverture de la vanne.

L'état du système est la concentration x en colorant dans la cuve et le modèle d'état s'écrit :

$$\dot{x} = (x_{in} - x)\frac{ku + b}{V}.$$

Le système est à l'équilibre lorsque le débit massique de colorant à l'entrée compense exactement le débit massique à la sortie :

$$\frac{k\bar{u}+b}{V}x_{in} = \frac{k\bar{u}+b}{V}\bar{x},$$

ce qui implique $\bar{x} = x_{in}$. Le diagramme d'équilibre illustré à la figure 7.3(b) montre que l'état d'équilibre est fixé et isolé mais que l'entrée constante correspondant à cet état d'équilibre est indéterminée.

Exemple 7.6. Cuve de mélange à écoulement forcé

Jusqu'à présent, nous avons considéré des exemples où le vecteur d'état est de dimension 1. Dans les systèmes de dimension supérieure, les diverses configurations décrites plus haut peuvent coexister, comme nous l'illustrons maintenant en prenant comme exemple une cuve de mélange à écoulement forcé (Fig. 7.4). Le modèle

FIGURE 7.4 – Cuve de mélange à écoulement forcé

d'état de ce système, en notant x_1 le volume de la cuve et x_2 la concentration en colorant dans celle-ci, s'écrit :

$$\dot{x}_1 = -F_0 + ku + b,$$

 $\dot{x}_2 = (x_{in} - x_2) \frac{ku + b}{x_1}$

Dans ce cas ci, le diagramme d'équilibre se représente en dimension 3 (Fig. 7.5) et on constate qu'il y a une seule valeur de l'entrée qui donne lieu à un équilibre,

FIGURE 7.5 – Diagramme d'équilibre pour la cuve de mélange à écoulement forcé

 $\bar{u} = (F_0 - b)/k$, et que pour cette valeur \bar{u} , le volume d'équilibre \bar{x}_1 est indéterminé alors que la concentration à l'équilibre vaut $\bar{x}_2 = x_{in}$.

Les exemples de dimension 1 ou 2 considérés jusqu'à présent ont illustré des situations où

- soit le système possède un équilibre isolé pour chaque valeur de l'entrée \bar{u} ,
- soit le système possède une infinité d'équilibres non isolés correspondant à une valeur précise de \bar{u} .

Pour les systèmes non-linéaires, d'autres configurations sont possibles. En particulier, on peut observer plusieurs équilibres isolés correspondant à une même valeur de \bar{u} comme cela est illustré dans l'exemple suivant.

Exemple 7.7. Réacteur chimique

Considérons un réacteur chimique continu parfaitement mélangé dans lequel se produit une réaction exothermique irréversible $A \longrightarrow B$. Le modèle d'état s'écrit comme suit (voir Chapitres 1 et 5) :

$$\dot{x}_A = -kx_A e^{-\frac{\dot{\alpha}}{T}} + D(x_A^{in} - x_A),$$

$$\dot{x}_B = kx_A e^{-\frac{\alpha}{T}} - Dx_B,$$

$$\dot{T} = hkx_A e^{-\frac{\alpha}{T}} - qT + u,$$

où x_A et x_A^{in} sont les concentrations en réactif A dans le réacteur et dans l'alimentation, x_B est la concentration en produit B, D est le débit volumétrique supposé constant d'alimentation et de sous-tirage, T est la température et u est l'apport calorifique par unité de temps. Les équilibres de ce système sont caractérisés par les équations

$$\begin{split} \bar{x}_A &= \frac{D x_A^{in}}{k e^{-\alpha/\bar{T}} + D}, \\ \bar{x}_B &= \frac{k \bar{x}_A e^{-\alpha/\bar{T}}}{D}, \\ \bar{T} &= \frac{1}{q} \left(\frac{D x_A^{in} h k e^{-\alpha/\bar{T}}}{k e^{-\alpha/\bar{T}} + D} + \bar{u} \right). \end{split}$$

La troisième équation permet de déterminer \overline{T} en fonction de \overline{u} . Les deux premières permettent alors de déduire de \overline{T} des valeurs d'équilibre pour \overline{x}_A et \overline{x}_B . Le

FIGURE 7.6 – Diagramme d'équilibre pour un réacteur chimique simple

diagramme d'équilibre représentant \overline{T} en fonction de \overline{u} est illustré à la figure 7.6. Suivant les valeurs de \overline{u} , on constate donc qu'il existe un, deux ou trois équilibres isolés.

7.2. Équilibres des systèmes linéaires

Soit le système linéaire

$$\dot{x} = Ax + Bu$$

pour lequel l'équation définissant les équilibres devient

$$A\bar{x} + B\bar{u} = 0.$$

Les équilibres d'un système linéaire sont complètement caractérisés par le théorème suivant.

Théorème 7.8.

- Si la matrice A est régulière, alors pour tout \bar{u} , le couple $(-A^{-1}B\bar{u},\bar{u})$ est un équilibre isolé.
- Si la matrice A est singulière, le système (7.1) a une infinité d'équilibres (non isolés) pour autant que $B\bar{u} \in \text{Im}A$. Ces équilibres sont la variété affine solution du système $A\bar{x} = -B\bar{u}$. Par contre, pour tout \bar{u} tel que $B\bar{u} \notin \text{Im}A$, le système (7.1) ne possède pas d'équilibre.

Pour les systèmes dynamiques linéaires, on ne peut donc pas avoir plusieurs équilibres isolés correspondant à la même valeur de l'entrée \bar{u} . Remarquons enfin que le couple $(\bar{x}, \bar{u}) = (0, 0)$ est toujours un équilibre pour un système dynamique linéaire de la forme (7.1).

Exemple 7.9. Modèles linéaires de machines DC

Plusieurs modèles de machines à courant continu (moteurs et génératrices) ont été présentés à la section 3.6. Sous les hypothèses générales de frottement visqueux linéaire et de non-saturation des flux, certains de ces modèles sont linéaires. Nous examinons ci-dessous leur configuration d'équilibre.

Génératrice DC commandée par le stator

On considère le modèle d'état d'une génératrice à courant continu tournant à vitesse ω constante. En notant $x_1 = I_s$, le courant statorique, $x_2 = I_r$, le courant rotorique et $u = v_s$ la tension aux bornes du circuit statorique, le modèle d'état est linéaire et s'écrit comme suit :

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -\frac{R_s}{L_s} & 0 \\ K_e \omega & -\frac{R_r + R_L}{L_r} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{L_s} \\ 0 \end{pmatrix} u$$

La matrice A de ce système linéaire est inversible et la génératrice possède donc un état d'équilibre isolé pour chaque valeur de la tension d'entrée \bar{u} :

$$\bar{x}_1 = \frac{L_s}{R_s} \bar{u}$$

$$\bar{x}_2 = \frac{L_r}{R_r + R_L} \frac{L_s}{R_s} K_e \omega \bar{u}$$

Moteur DC commandé par le rotor

Avec comme variables d'état pour ce système $x_1 = \theta$, la position angulaire du rotor, $x_2 = \dot{\theta} = \omega$, la vitesse de rotation et $x_3 = I_r$, le courant rotorique, on

obtient le modèle suivant :

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -\frac{B}{J} & \frac{K_m I_s}{J} \\ 0 & -\frac{K_e I_s}{L_r} & -\frac{R_r}{L_r} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{J} \\ \frac{1}{L_r} & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

où u_1 est le couple résistant et u_2 la tension de commande de l'induit. On observe que :

- la matrice d'état A du système est singulière,
- $B\bar{u} = (0 \ \bar{u}_2/J \ \bar{u}_1/L_r)^T \notin \text{Im}A$ sauf si $\bar{u}_1/\bar{u}_2 = -R_r/K_mI_s$ ou si $\bar{u}_1 = \bar{u}_2 = 0.$

Le premier cas correspond à une tension de commande rotorique qui crée un couple moteur compensant exactement le couple résistant. La vitesse de rotation est alors nulle et la position angulaire du rotor est indéterminée. La valeur d'équilibre du courant rotorique est donnée par $\bar{x}_3 = \bar{I}_r = \bar{u}_2/K_m I_s$. Dans le deuxième cas, les équilibres sont de la forme $\bar{x}_1 = \bar{\theta}, \bar{x}_2 = 0, \bar{x}_3 = 0$, c.à.d. que le moteur est à l'arrêt avec le rotor dans une position angulaire quelconque.

On peut examiner aussi les équilibres du sous-système dont les états sont la vitesse ω et le courant I_r :

$$\begin{pmatrix} \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} -\frac{B}{J} & \frac{K_m I_s}{J} \\ -\frac{K_e I_s}{L_r} & -\frac{R_r}{L_r} \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 & \frac{1}{J} \\ \frac{1}{L_r} & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}.$$

La matrice d'état de ce système est inversible (toutes les constantes sont positives et le déterminant ne s'annule donc pas) et à chaque valeur du vecteur d'entrée \bar{u} correspondra une valeur d'équilibre du vecteur d'état $(\bar{x}_1 \ \bar{x}_2)^T$. Cette situation d'équilibre, qui n'est en rien contradictoire avec la précédente, correspond au cas d'un moteur DC qui entraîne une charge en tournant à vitesse constante.

7.3. Invariants

La notion d'invariant que nous allons définir dans cette section est une généralisation de la notion d'équilibre.

Définition 7.10. Invariant

Le sous-ensemble $\mathcal{X} \times U \subset \mathbb{R}^n \times \mathbb{R}^m$ est un invariant du système dynamique $\dot{x} = f(x, u)$ si :

$$\left\{\begin{array}{l} x(t_0) \in \mathcal{X} \\ u(t) \in U \quad \forall t \ge t_0 \end{array}\right\} \quad \Rightarrow \quad \left\{\begin{array}{l} x(t) \text{ existe} \\ x(t) \in \mathcal{X} \end{array}\right\} \forall t \ge t_0 \qquad \qquad \Box$$

7.3. Invariants

Cette définition signifie donc que si l'état du système se trouve dans \mathcal{X} à un instant initial, il y restera à tous les instants ultérieurs tant que le signal d'entrée u(t) sera lui-même maintenu dans U.

Nous avons déjà rencontré plusieurs exemples d'invariants dans les chapitres précédents. L'exemple le plus simple est l'ensemble des équilibres d'un système correspondant à une entrée \bar{u} constante. Dans ce cas, le sous-ensemble $U = \{\bar{u}\}$ est réduit à un singleton tandis que \mathcal{X} contient le ou les états d'équilibres \bar{x} correspondants.

Un autre exemple typique est l'orthant positif $(\mathcal{X} = \mathbb{R}^n_+) \times (U \subset \mathbb{R}^m)$ qui est, par définition, un invariant pour les systèmes positifs (voir Définition 4.3 et Théorème 4.4.).

Il y a diverses manières de caractériser les invariants d'un système dynamique selon la forme particulière que prend le sous-ensemble \mathcal{X} . Nous allons présenter deux caractérisations remarquables : dans la première \mathcal{X} est un ouvert de \mathbb{R}^n , dans la seconde \mathcal{X} est une hypersurface dans \mathbb{R}^n .

• \mathcal{X} est un ouvert dans \mathbb{R}^n

Soit \mathcal{X} un sous-ensemble ouvert de \mathbb{R}^n . Si en tout point y de la frontière $\partial \mathcal{X}$, le vecteur f(y, v) pointe vers l'intérieur de \mathcal{X} pour tout $v \in U$, alors le sous-ensemble $\mathcal{X} \times U$ est un invariant du système $\dot{x} = f(x, u)$.

Cette caractérisation d'un invariant sera illustrée au chapitre 8 (section 8.4).

• \mathcal{X} est une hypersurface de niveau dans \mathbb{R}^n

On appelle *intégrale première* une fonction z = h(x) de classe C^2 telle que :

$$\frac{\partial h}{\partial x}f(x,u) = 0 \quad \forall u \in U.$$
(7.1)

On définit le sous-ensemble $\mathcal X$ comme suit :

$$\mathcal{X} \triangleq \{ x \in \mathbb{R}^n : h(x) = c \}$$

avec c constante réelle quelconque. Cet ensemble \mathcal{X} est une hypersurface dans \mathbb{R}^n . Comme la condition (7.1) implique que la fonction z = h(x) est constante le long des trajectoires, il est évident que le sous-ensemble $\mathcal{X} \times U$ est un invariant du système $\dot{x} = f(x, u)$. Les *invariants réactionnels* en constituent une illustration typique.

Exemple 7.11. Les invariants réactionnels

Ainsi que nous l'avons vu au chapitre 5, le modèle d'état d'un réacteur continu parfaitement mélangé s'écrit comme suit :

$$\dot{x} = Cr(x) + u(x^{in} - x)$$
 (7.2)

où x est la composition du milieu réactionnel, u le débit d'alimentation, x^{in} la composition (supposée constante) de l'alimentation, C est la matrice stchiométrique et r(x) est le vecteur des cinétiques de réaction.

Le débit u est positif et borné par la capacité maximale de la pompe d'alimentation u_{max} , de sorte que nous définissons U comme l'intervalle fermé :

$$U = [0, u_{\max}]$$

D'autre part, le sous-ensemble ${\mathcal X}$ est défini comme suit :

$$\mathcal{X} = \{ x : x \in \mathbb{R}^n_+, \ Lx = Lx^{in} \}$$

où L est une matrice $(n - p \times n)$ telle que LC = 0. En d'autres termes, les lignes de L forment une base du noyau de la transposée de la matrice stoechiométrique C.

Le sous-ensemble $\mathcal{X} \times U$ ainsi défini constitue un invariant du système (7.2). Pour le vérifier, nous considérons la transformation linéaire partielle d'état :

$$z = Lx$$

dont nous calculons l'évolution le long des trajectoires du système :

$$\dot{z} = LCr(x) - u(Lx^{in} - Lx) = -u(Lx^{in} - Lx)$$
 car $LC = 0$

Selon la définition de \mathcal{X} , on observe immédiatement que, si $Lx(t_0) = Lx^{in}$, alors $\dot{z} = 0$ le long des trajectoires du système et donc $Lx(t) = Lx^{in} \quad \forall t \ge t_0$, et ceci indépendamment du signal d'entrée u(t).

D'autre part, le système (7.2) est un système positif et donc $x(t) \in \mathbb{R}^n_+ \forall t \ge t_0$ si $x(t_0) \in \mathbb{R}^n_+$ et si $u(t) \in U \forall t \ge t_0$.

Les invariants définis de cette manière portent le nom d'invariants réactionnels ou encore d'invariants chimiques dans la littérature.

7.4. Exercices

Exercice 7.1. Un relais électromagnétique

Déterminer les équilibres du modèle d'état d'un relais électromagnétique donné au chapitre 3, exemple 3.2 (voir aussi l'exercice 6.2).

Exercice 7.2. Génératrice à courant continu

On considère le modèle d'une génératrice à courant continu (voir chapitre 3, section 3.6) débitant sur une charge résistive avec un frottement visqueux linéaire.

1. Calculer les équilibres en fonction des entrées \bar{u}_1 et \bar{u}_2

 Déterminer les points de fonctionnement optimaux qui maximisent le courant débité par la génératrice.

Exercice 7.3. Une boucle à asservissement de phase

Une boucle à asservissement de phase (phase-locked loop) utilisée dans les réseaux de communication est décrite par l'équation

$$\ddot{y} + (a + b\cos y)\dot{y} + u\sin y = 0$$

avec a > b > 0 et $u(t) > 0 \forall t$.

- 1. Mettre le système sous forme d'un modèle d'état.
- 2. Déterminer les équilibres.

Exercice 7.4. Un bateau

Déterminer les équilibres du modèle d'état du bateau de l'exercice 2.7. Quel est le sens physique de ces équilibres ? $\hfill\square$

Exercice 7.5. Un broyeur industriel

FIGURE 7.7 – Circuit de broyage - Photo d'un broyeur industriel

Le fonctionnement d'un circuit de broyage industriel (fig. 7.7) est décrit par le modèle d'état :

$$\dot{x}_1 = -\gamma_1 x_1 + (1 - \alpha)\phi(x_3), \dot{x}_2 = -\gamma_2 x_2 + \alpha\phi(x_3), \dot{x}_3 = \gamma_2 x_2 - \phi(x_3) + u.$$

avec les notations suivantes :

- x_1 = quantité de produit fini dans le séparateur;
- x_2 = quantité de matière recyclée dans le séparateur ;
- x_3 = quantité de matière dans le broyeur :
- u = debit d'alimentation du broyeur.

Le paramètre α est la constante caractéristique du séparateur. ($0 < \alpha < 1$). La fonction de broyage $\phi(x_3)$ est de la forme suivante :

$$\phi(x_3) = k_1 x_3 e^{-k_2 x_3}$$

où k_1 et k_2 sont des constantes positives.

- 1. Montrer qu'il s'agit d'un système à compartiments et donner le graphe du système.
- 2. Déterminer les équilibres du système.
- 3. L'ensemble décrit par les inégalités suivantes caractérise une situation de bourrage de l'installation. Montrer qu'il s'agit d'un invariant du système.

$$x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0,$$

$$(1 - \alpha)\phi(x_3) \le \gamma_1 x_1 < \bar{u},$$

$$\alpha\phi(x_3) \le \gamma_2 x_2,$$

$$\frac{\partial\phi(x_3)}{\partial x_3} < 0.$$

Exercice 7.6. Un réacteur biochimique

On considère le modèle d'état d'un réacteur biochimique de l'exercice 6.2.

- 1. Déterminer les équilibres du système et esquisser les diagrammes d'équilibre.
- 2. Déterminer les invariants réactionnels du système.
- 3. Mêmes questions si la réaction est réversible.

Exercice 7.7. Dynamique d'une infection virale

La dynamique d'un infection virale avec actions lytique et non-lytique d'immunisation est décrite par le modèle d'état suivant :

$$\dot{x}_1 = \lambda - dx_1 - \frac{\beta x_1 x_2}{1 + q x_3},$$

$$\dot{x}_2 = \frac{\beta x_1 x_2}{1 + q x_3} - a x_2 - p x_2 x_3,$$

$$\dot{x}_3 = c x_2 - b x_3.$$

144
7.4. Exercices

Dans ces équations, x_1 , x_2 et x_3 sont respectivement les quantités de cellules saines, infectées et immunes. Les cellules infectées produisent les particules virales. λ est le taux de production des cellules saines et d leur taux de mortalité. Les composants lytiques de l'activité anti-virale tuent les cellules infectées tandis que les composants non-lytique inhibent la réplication des particules virales. Les cellules infectées sont tuées à la vitesse px_3 où p représente l'intensité de l'activité antivirale lytique. La production des cellules infectées est représentée par le terme

$$\frac{\beta x_1 x_2}{1 + q x_3}$$

où qx_3 représente l'intensité d'inhibition de la réplication par l'activité antivirale non-lytique. Le taux de mortalité des cellules infectées est a et le taux de mortalité des cellules immunes est b. Enfin cx_2 est le taux de production des cellules immunes.

- 1. Montrer que le modèle d'état est un système réactionnel.
- 2. Montrer que le modèle d'état est équivalent à un système à compartiments.
- Déterminer les équilibres du système dans l'orthant positif.

Exercice 7.8. Système mécanique

On considère le modèle d'un système mécanique à un degré de liberté :

$$\ddot{\theta} + c\dot{\theta} + r\sin\theta = 0$$

- 1. Ecrire le modèle d'état du système ($x_1 = \theta$).
- 2. Déterminer les équilibres.
- 3. Montrer que, sous la condition $c^2 \ge 4r$, existe un invariant borné (dont l'intérieur est non vide) dans l'orthant $\{x_1 \ge 0, x_2 \le 0\}$.

Chapitre 8

Systèmes plans

Dans ce chapitre, nous étudions en détail le comportement des trajectoires des systèmes dynamiques de dimension 2 (appelés aussi systèmes plans) lorsque l'entrée u(t) est constante : $u(t) = \bar{u}$. Ces systèmes sont décrits par les équations suivantes :

$$\dot{x}_1 = f_1(x_1, x_2, \bar{u}),$$

 $\dot{x}_2 = f_2(x_1, x_2, \bar{u}).$

Une importante motivation de cette restriction aux systèmes plans est d'illustrer facilement les résultats obtenus en représentant les orbites dans le *plan de phase*, c.à.d. le plan des variables d'état x_1 et x_2 . En outre, les systèmes plans permettent d'illustrer la plupart des comportements caractéristiques qui différencient les systèmes non linéaires des systèmes linéaires.

Nous étudierons successivement les trajectoires des systèmes linéaires, puis le comportement des trajectoires des systèmes non linéaires au voisinage des points d'équilibre. Ensuite, nous nous intéresserons aux trajectoires périodiques et aux cycles limites, pour conclure par un aperçu de la théorie des bifurcations.

8.1. Systèmes linéaires plans

Considérons les systèmes linéaires plans lorsque l'entrée u(t) est constante : $u(t) = \bar{u}$. Ces systèmes sont représentés par l'équation

$$\dot{x} = Ax + B\bar{u}.$$

où A est une matrice 2×2 . Nous supposons qu'il existe au moins un état d'équilibre \bar{x} correspondant à \bar{u} .

Par une transformation d'état appropriée, $z=M^{-1}(x-\bar{x}),$ on se ramène au système

$$\dot{z} = A'z$$

où

$$A' = M^{-1}AM.$$

Les valeurs propres de la matrice A^\prime sont celles de la matrice A et elle possède l'une des trois formes suivantes :

a.

$$A' = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right)$$

Cette forme correspond au cas où la matrice A a deux valeurs propres réelles distinctes ou une valeur propre réelle double de multiplicité géométrique 2.

b.

$$A' = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right)$$

Cette forme correspond au cas où la matrice A a une valeur propre réelle double de multiplicité géométrique égale à un. C'est la "forme de Jordan" associée à A.

c.

$$A' = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}, \quad \beta > 0$$

Cette forme correspond au cas où la matrice A a deux valeurs propres complexes conjuguées $\alpha\pm\beta i.$

Dans ces nouvelles coordonnées, les trajectoires se calculent facilement et sont décrites par les équations suivantes :

a.

$$z_1(t) = z_1(0)e^{\lambda_1 t}, z_2(t) = z_2(0)e^{\lambda_2 t}.$$

b.

$$z_1(t) = z_1(0)e^{\lambda t} + tz_2(0)e^{\lambda t}, z_2(t) = z_2(0)e^{\lambda t}.$$

с.

$$z_1(t) = e^{\alpha t} (z_1(0) \cos \beta t + z_2(0) \sin \beta t), z_2(t) = e^{\alpha t} (z_2(0) \cos \beta t - z_1(0) \sin \beta t).$$

148

Les tableaux 8.1 à 8.3 illustrent les orbites en fonction de l'une de ces trois formes et en fonction du signe des valeurs propres. Ces orbites sont représentées dans le plan (z_1, z_2) et dans le plan (x_1, x_2) , centré au point d'équilibre (\bar{x}_1, \bar{x}_2) . Dans ce deuxième cas, les directions privilégiées dans les figures correspondent aux vecteurs propres de la matrice A.

Remarques 8.1.

- 1. Dans les deux premiers cas repris dans le tableau 8.1, lorsque $\lambda_1 = \lambda_2$, les trajectoires sont rectilignes et peuvent donc être représentées par un faisceau de droites issu de l'origine.
- 2. Dans le cas ou l'une des deux valeurs propres est nulle, l'équilibre n'est pas isolé. Le vecteur propre correspondant à la valeur propre nulle définit une droite de points d'équilibre et toutes les trajectoires sont rectilignes et convergent vers ou sont issues d'un point de cette droite d'équilibres.

Définition 8.2. Lorsque l'équilibre est tel que les trajectoires convergent vers cet équilibre, on dira qu'il s'agit d'un équilibre attractif.

Les valeurs propres λ_1 et λ_2 de la matrice A sont les racines du polynôme caractéristique

$$p(x) = x^2 - (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2$$

= $x^2 - tr(A)x + detA.$

Observons que pour déterminer l'allure des trajectoires, il n'est pas nécessaire de calculer explicitement ces valeurs propres. La figure 8.1 caractérise la nature de l'équilibre (et dès lors l'allure des trajectoires) en fonction des deux coefficients du polynôme caractéristique respectivement égaux à l'opposé de la somme et au produit des valeurs propres.

On peut se demander dans quelle mesure la nature des trajectoires décrites cidessus est sensible à des perturbations du système. Pour répondre à cette question, considérons un système linéaire nominal $\dot{x} = Ax + Bu$ et une perturbation du système nominal de la forme $\dot{x} = (A + \Delta A)x + Bu$. Si la matrice A possède des valeurs propres distinctes, on peut montrer que celles-ci dépendent continûment des coefficients de A, ce qui signifie que pour tout nombre positif ϵ , il existe un nombre positif δ tel que si chacun des coefficients de la perturbation ΔA est plus petit que δ , les valeurs propres de la matrice perturbée $A + \Delta A$ seront à l'intérieur de boules de rayon ϵ centrées en les valeurs propres de A. Donc, toute valeur propre initialement à l'intérieur du demi-plan de gauche ($Re(\lambda) < 0$) ou du demi-plan de droite ($Re(\lambda) > 0$) restera dans le même demi-plan pour des perturbations ΔA suffisamment petites et, qualitativement, les trajectoires du système perturbé seront semblables à celles du système nominal : un foyer attractif reste un foyer

Туре	Allure des	Allure des	Conditions
			sur les
de l'équilibre	trajectoires (z_1, z_2)	trajectoires (x_1, x_2)	valeurs propres
Noeud attractif		x ₂	$\lambda_2 \le \lambda_1 < 0$
Noeud répulsif			$0 < \lambda_1 \le \lambda_2$
Col			$\lambda_1 < 0 < \lambda_2$
	$\begin{array}{c} z_{2} \\ \hline \\ $		
Equilibre			$\lambda_1 = 0,$
non isolé, attractif			$\lambda_2 < 0$
Equilibre			$\lambda_1 = 0,$
non isolé, répulsif			$\lambda_2 > 0$

TABLE 8.1 – Orbites des systèmes linéaires plans : cas a.

Туре	Allure des	Allure des	Conditions sur
de l'équilibre	trajectoires (z_1, z_2)	trajectoires (x_1, x_2)	les valeurs propres
Noeud dégénéré attractif			$\lambda_1 = \lambda_2 < 0$
Noeud dégénéré répulsif			$\lambda_1 = \lambda_2 > 0$
Equilibre non-isolé	$\begin{array}{c c} z_2 \\ \downarrow \\ $		$\lambda_1 = \lambda_2 = 0$

TABLE 8.2 – Orbites des systèmes linéaires plans : cas b.

Туре	Allure des	Allure des	Conditions sur
de l'équilibre	trajectoires (z_1, z_2)	trajectoires (x_1, x_2)	les valeurs propres
Foyer attractif			$\lambda_{1,2} = \alpha \pm \beta i$ $\alpha < 0, \ \beta \neq 0$
Foyer répulsif			$\lambda_{1,2} = \alpha \pm \beta i$
			$\alpha > 0, \ \beta \neq 0$
Centre			$\lambda_{1,2} = \pm \beta i$
			μ τ υ

TABLE 8.3 – Orbites des systèmes linéaires plans : cas c.

FIGURE 8.1 – Caractérisation des équilibres en fonction de la somme et du produit des valeurs propres

attractif, un noeud répulsif reste un noeud répulsif, un col reste un col,... On dit dans ce cas que de tels systèmes (ou de tels équilibres) sont *structurellement stables*.

Il n'en va pas de même dans le cas d'un équilibre de type *centre*, auquel correspondent des trajectoires périodiques elliptiques et des valeurs propres imaginaires pures. Dans ce cas en effet, la moindre perturbation de la matrice A peut faire en sorte que les valeurs propres quittent l'axe imaginaire et que les trajectoires correspondantes deviennent un foyer attractif ou répulsif. Un système linéaire auquel correspond un équilibre de type *centre* n'est donc **pas** structurellement stable.

Le cas de systèmes linéaires ayant une ou deux valeurs propres nulles conduit également à un changement qualitatif des trajectoires sous l'effet de perturbations arbitrairement petites. Lorsque le système possède une valeur propre double différente de 0, de petites perturbations peuvent conduire à des valeurs propres réelles ou complexes conjuguées, mais la localisation dans l'un ou l'autre des demi-plans ne sera pas modifiée. Un noeud attractif (répulsif) dégénéré peut donc se transformer en noeud attractif (répulsif) ou en foyer attractif (répulsif).

L'analyse précédente montre bien que c'est l'axe imaginaire qui peut poser problème. On introduit dès lors la définition suivante.

Définition 8.3. Si toutes les valeurs propres de A ont une partie réelle non nulle, le système $\dot{x} = Ax$ (ou le point d'équilibre) est dit hyperbolique.

Il résulte de ce qui précède qu'un système hyperbolique est structurellement stable et que les trajectoires resteront qualitativement semblables ¹ pour de petites

^{1.} sauf dans le cas d'une valeur propre double différente de zéro, pour lequel de petites

perturbations. Ces considérations vont être de grande importance pour l'analyse des systèmes non linéaires.

8.2. Systèmes non linéaires plans

Les orbites illustrées dans les tableaux de la section précédente ne sont pas seulement valables au voisinage du point d'équilibre (ramené à l'origine). On a bien caractérisé grâce à ces tableaux l'ensemble des orbites possibles des systèmes linéaires plans, quelle que soit la condition initiale. Cette observation constitue une différence fondamentale entre systèmes linéaires et non linéaires. En effet, on a vu au chapitre précédent que les systèmes non-linéaires peuvent présenter plusieurs équilibres isolés distincts pour une même valeur de l'entrée \bar{u} . Ceci implique que, contrairement au cas des systèmes linéaires, le comportement des orbites au voisinage d'un équilibre gardera le plus souvent un caractère local et ne pourra nullement être étendu à l'ensemble du plan de phase. Moyennant cette restriction, un résultat important permet cependant d'étendre aux systèmes non linéaires une partie de l'analyse que nous venons de développer pour les systèmes linéaires.

Soit le système dynamique décrit par

$$\dot{x}_1 = f_1(x_1, x_2, u),$$
 (8.1)

$$\dot{x}_2 = f_2(x_1, x_2, u).$$
 (8.2)

ou, sous forme condensée,

$$\dot{x} = f(x, u), \tag{8.3}$$

pour lequel on suppose l'existence d'un équilibre (\bar{x}, \bar{u}) tel que $f(\bar{x}, \bar{u}) = 0$. On suppose en outre que la fonction $f(x, \bar{u})$ est suffisamment régulière dans le voisinage de cet équilibre pour y admettre un développement de Taylor convergent.

L'approximation linéaire de ce système au voisinage de l'équilibre (\bar{x}, \bar{u}) , obtenue en négligeant les termes d'ordre supérieur ou égal à 2 dans le développement de Taylor de $f(x, \bar{u})$ autour de (\bar{x}, \bar{u}) , est donnée par

$$\dot{\tilde{x}} = \left(\frac{\partial f(x,\bar{u})}{\partial x}\right)_{\bar{x}} \tilde{x}$$
(8.4)

où $\tilde{x} = x - \bar{x}$. Notons $A = \left(\frac{\partial f(x,\bar{u})}{\partial x}\right)_{\bar{x}}$, la matrice Jacobienne de f à l'équilibre. On peut alors généraliser la définition 8.3 comme suit :

Définition 8.4. Equilibre hyperbolique

L'équilibre (\bar{x}, \bar{u}) du système non linéaire (8.3) est dit hyperbolique si toutes les valeurs propres de A ont une partie réelle non nulle ($Re(\lambda_i(A)) \neq 0, \forall i$). \Box

perturbations peuvent engendrer soit un foyer, soit un noeud ; le caractère attractif ou répulsif de l'équilibre est, lui, de toute façon préservé.

Il doit être clair que c'est bien l'équilibre (\bar{x}, \bar{u}) qui est (ou qui n'est pas) hyperbolique, et non le système non linéaire (8.3). En effet, ce système peut avoir plusieurs équilibres isolés pour une même valeur \bar{u} , certains étant hyperboliques et d'autres non. Dans quelle mesure l'étude de l'approximation linéaire d'un système non-linéaire au voisinage d'un équilibre permet-elle d'en déduire le comportement du système non-linéaire? Pour préciser ce que l'on entend par comportement, nous voulons pouvoir comparer les trajectoires et introduisons dès lors la définition suivante.

Définition 8.5. Les trajectoires (ou les orbites) de deux systèmes dynamiques sont *topologiquement équivalentes* s'il existe un *homéomorphisme* (une bijection bicontinue) qui permet de passer d'une trajectoire du premier système à une trajectoire du second.

Théorème 8.6. Hartman-Grobman

Si l'équilibre (\bar{x}, \bar{u}) est hyperbolique, alors les trajectoires du système non linéaire (8.3) dans un voisinage de l'équilibre (\bar{x}, \bar{u}) sont topologiquement équivalentes à celles de l'approximation linéaire (8.4).

Des trajectoires topologiquement équivalentes ont la même allure. On pourra donc parler de noeud ou de foyer attractif ou répulsif, ou encore de col, pour les équilibres de systèmes non linéaires, en étudiant les valeurs propres de la matrice de l'approximation linéaire, mais **pas** de centre.

Remarques 8.7.

- L'intérêt de ce théorème est évident. Sa limitation principale, à savoir son caractère local, ne l'est pas moins. En particulier, ce théorème ne fournit aucune indication sur la taille du bassin d'attraction d'un équilibre attractif.
- Dans le cas d'un équilibre non hyperbolique, ce sont les termes d'ordre supérieur, ceux-là même qui ont été négligés, qui détermineront localement l'allure des trajectoires.

Illustrons maintenant ce qui précède par quelques exemples de systèmes non linéaires d'ordre 2.

8.2.1. Les systèmes mécaniques à un degré de liberté

Les équations d'état d'un système mécanique à un degré de liberté s'écrivent (voir chapitre 2) :

$$\dot{x}_1 = x_2,$$

 $m\dot{x}_2 = -g(x_1) - k(x_1) - h(x_2) + u,$

où x_1 est la coordonnée de position du corps en mouvement, x_2 est la vitesse, m désigne la masse ou l'inertie et u représente une force ou un couple extérieur appliqué au système. Les fonctions scalaires $g(x_1)$ et $k(x_1)$ correspondent respectivement à la gravité et à l'élasticité tandis que $h(x_2)$ (tel que h(0) = 0) représente le frottement visqueux. Le frottement sec est négligé. Notons aussi (voir chapitre 2, section 2.7) que

$$g(x_1) + k(x_1) = \frac{\partial E_p}{\partial x_1}$$

où E_p désigne l'énergie potentielle du système.

Les équilibres de ce système sont caractérisés par

$$\bar{x}_2 = 0,$$

$$g(\bar{x}_1) + k(\bar{x}_1) = \bar{u}.$$

Sans perte de généralité, considérons le cas particulier où m = 1. La matrice Jacobienne du système à l'équilibre $(\bar{x}_1, 0, \bar{u})$ s'écrit :

$$A = \begin{pmatrix} 0 & 1\\ -\left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1} & -h'(0) \end{pmatrix}.$$

Le polynôme caractéristique de cette matrice est

$$p(x) = x^2 + h'(0)x + \left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1}$$

Le produit et la somme des valeurs propres sont donc donnés par

$$\lambda_1 \lambda_2 = \left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1}, \quad \lambda_1 + \lambda_2 = -h'(0).$$

La dérivée h'(0) du frottement visqueux est par nature non-négative : $\lambda_1 + \lambda_2 = -h'(0) \le 0$.

Les équilibres du système sont hyperboliques si

$$\begin{split} h'(0) > 0 \quad \text{et} \quad \left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1} \neq 0,\\ \text{ou si } h'(0) = 0 \quad \text{et} \quad \left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1} < 0. \end{split}$$

On observe donc que les équilibres ne sont *pas* hyperboliques si l'énergie potentielle $E_p(x_1)$ est une fonction affine de la position x_1 , ou plus généralement si l'équilibre

FIGURE 8.2 – Lieu des valeurs propres des équilibres d'un système mécanique à un degré de liberté

correspond à un point d'inflexion de $E_p(x_1)$. C'est également le cas lorsque h'(0) = 0 et $\left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1} \geq 0$. Les équilibres hyperboliques d'un système mécanique à un degré de liberté

Les équilibres hyperboliques d'un système mécanique à un degré de liberté peuvent alors être complètement caractérisés comme indiqué au tableau 8.4 (voir aussi la figure 8.2). On observe en particulier qu'un équilibre hyperbolique ne peut jamais être un noeud ou un foyer répulsif.

8.2.2. Les circuits électriques RLC

Les circuits électriques simples qui ne contiennent qu'une inductance et une capacité sont généralement dénommés *circuits RLC* dans la littérature. Dans les ouvrages de référence en génie électrique ou en théorie des circuits, ils font l'objet d'une étude approfondie car ils constituent la configuration de base de nombreux dispositifs pratiques (filtres, oscillateurs,...).

Le circuit RLC série représenté à la figure 8.3 est un exemple typique. En

FIGURE 8.3 – Circuit RLC série

application des principes étudiés au chapitre 3, le comportement dynamique de ce circuit est décrit par un modèle d'état de dimension 2 :

$$L\dot{x}_1 = -r(x_1) - x_2 + u$$
$$C\dot{x}_2 = x_1$$

Caractérisation	Nature des équilibres hyperboliques	
$0 < [h'(0)]^2 < 4 \left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1}$	foyer stable	
$0 < 4\left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1} \le [h'(0)]^2$	noeud stable	
$\left(\frac{\partial^2 E_p}{\partial x_1^2}\right)_{\bar{x}_1} < 0$	col	

TABLE 8.4 – Equilibres hyperboliques des systèmes mécaniques à un degré de liberté

où $x_1 = i$ est le courant dans l'inductance linéaire L, $x_2 = v$ est la tension aux bornes de la capacité linéaire C et $r(x_1)$ est la caractéristique tension-courant (éventuellement non linéaire) de la résistance.

Les équilibres de ce système sont caractérisés par les équations :

$$\bar{x}_2 + r(0) = \bar{u},$$
$$\bar{x}_1 = 0.$$

Sans perte de généralité, considérons le cas particulier L=1 et C=1. La matrice Jacobienne du système à l'équilibre $(0, \bar{x}_2, \bar{u})$ s'écrit :

$$A = \left(\begin{array}{cc} -r'(0) & -1\\ 1 & 0 \end{array}\right).$$

	Nature des équilibres hyperboliques
$r'(0) \geq 2$	noeud attractif
0 < r'(0) < 2	foyer attractif
-2 < r'(0) < 0	foyer répulsif
$r'(0) \le -2$	noeud répulsif

TABLE 8.5 – Equilibres hyperboliques d'un circuit RLC

Le polynôme caractéristique de cette matrice est :

$$p(x) = \lambda^2 + r'(0)\lambda + 1$$

où $r'(0) \triangleq (\partial r/\partial x_1)_{x_1=0}.$

Le produit et la somme des valeurs propres sont donnés par

$$\lambda_1 \lambda_2 = 1, \quad \lambda_1 + \lambda_2 = -r'(0).$$

Les équilibres du système sont donc hyperboliques si $r'(0) \neq 0$, c.à.d. si la dérivée de la caractéristique de la résistance n'est pas nulle à l'origine. On observe que c'est notamment le cas pour une résistance linéaire.

Les équilibres hyperboliques d'un circuit RLC série sont alors complètement caractérisés comme indiqué sur le tableau 8.5 (voir aussi la figure 8.4). On remarque en particulier qu'un équilibre hyperbolique d'un circuit RLC série ne peut jamais être un col.

8.2.3. Les systèmes à deux compartiments

Considérons les systèmes à deux compartiments dont le graphe est représenté à la figure 8.5. Le signal d'entrée u est le débit d'alimentation du premier compartiment. Nous supposons que les flux échangés entre les compartiments satisfont les conditions C1 - C4 de modélisation du chapitre 4 (Section 4.3). La dynamique du système est alors décrite par un modèle d'état de dimension 2 de la forme générale

 $\rm Figure~8.5-Système$ à deux compartiments

suivante :

$$\dot{x}_1 = -q_{12}(x_1, x_2) + q_{21}(x_2, x_1) - q_{10}(x_1) + u \dot{x}_2 = q_{12}(x_1, x_2) - q_{21}(x_2, x_1) - q_{20}(x_2)$$

Les fonctions q_{ij} satisfont les conditions suivantes sur l'orthant positif :

$$q_{ij}(0, x_j) = 0 \quad \frac{\partial q_{ij}}{\partial x_i} \ge 0 \quad \frac{\partial q_{ij}}{\partial x_j} \le 0 \tag{8.5}$$

Sous ces conditions, le système possède une infinité d'équilibres isolés positifs $(\bar{x}_1, \bar{x}_2, \bar{u})$. La matrice Jacobienne autour de l'un de ces équilibres s'écrit :

$$A = \left(\begin{array}{cc} -(a+c) & b \\ a & -(b+d) \end{array}\right)$$

avec les notations simplifiées suivantes (toutes les dérivées partielles sont évaluées à l'état d'équilibre) :

$$a \triangleq \frac{\partial q_{12}}{\partial x_1} - \frac{\partial q_{21}}{\partial x_1} \qquad c \triangleq \frac{\partial q_{10}}{\partial x_1}$$
$$b \triangleq \frac{\partial q_{21}}{\partial x_2} - \frac{\partial q_{12}}{\partial x_2} \qquad d \triangleq \frac{\partial q_{20}}{\partial x_2}$$

Sous les conditions (8.5), on observe immédiatement que $a, b, c, d, \geq 0$. Le polynôme caractéristique de la matrice Jacobienne s'écrit :

$$p(x) = x^{2} + (a + b + c + d)x + (ad + bc + cd)$$

Le produit et la somme des valeurs propres sont donc donnés par :

$$\lambda_1 \lambda_2 = ad + bc + cd \quad \lambda_1 + \lambda_2 = -(a + b + c + d)$$

8.2. Systèmes non linéaires plans

Les équilibres du système sont donc hyperboliques si les inégalités suivantes sont satisfaites :

$$a+b+c+d>0$$
 et $ad+bc+cd>0$

On démontre aisément que, sous ces conditions, l'inégalité suivante est aussi satisfaite :

 $0 < 4(ad + bc + cd) \le (a + b + c + d)^2$

On en déduit que les équilibres hyperboliques d'un système à deux compartiments ne peuvent être que des noeuds attractifs (voir figure 8.6).

FIGURE 8.6 – Lieu des valeurs propres des équilibres d'un système à deux compartiments

8.2.4. Les systèmes réactionnels à deux espèces

Les systèmes réactionnels les plus simples font intervenir deux espèces. C'est le cas par exemple d'une réaction irréversible convertissant un réactif X_1 en un produit X_2 :

$$X_1 \longrightarrow X_2$$

Supposons que cette réaction se déroule dans un réacteur continu parfaitement mélangé à volume constant. Le réacteur est alimenté avec l'espèce X_1 , à débit volumétrique constant strictement positif. Comme nous l'avons vu au chapitre 5, le modèle d'état du réacteur peut s'écrire comme suit :

$$\dot{x}_1 = -r(x_1, x_2) + d(u - x_1)$$

$$\dot{x}_2 = r(x_1, x_2) - dx_2$$

où x_1 et x_2 représentent les concentrations des espèces X_1 et X_2 dans le milieu réactionnel, d est le taux de dilution et u est la concentration du réactif X_1 dans l'alimentation. La cinétique de réaction $r(x_1, x_2)$ est supposée être une fonction des concentrations des deux espèces.

FIGURE 8.7 – Lieu des valeurs propres des équilibres d'un système réactionnel à deux espèces

Les équilibres du système sont donc caractérisés par les équations :

$$d\bar{x}_2 = d(\bar{u} - \bar{x}_1) = r(\bar{x}_1, \bar{x}_2)$$

Ces équations impliquent à l'équilibre que $\bar{x}_1 + \bar{x}_2 = \bar{u}$, c'est à dire que la somme des concentrations des espèces X_1 et X_2 dans le réacteur est égale à la concentration du réactif X_1 dans l'alimentation. Cette observation est évidemment en accord avec le principe de conservation de la masse.

La matrice Jacobienne autour de l'équilibre s'écrit :

$$A = \left(\begin{array}{cc} -a - d & -b \\ a & b - d \end{array}\right)$$

avec les notations simplifiées suivantes :

$$a \triangleq \left(\frac{\partial r(x_1, x_2)}{\partial x_1}\right)_{\bar{x}_1, \bar{x}_2} \qquad b \triangleq \left(\frac{\partial r(x_1, x_2)}{\partial x_2}\right)_{\bar{x}_1, \bar{x}_2}$$

Le polynôme caractéristique de la matrice Jacobienne s'écrit :

$$p(x) = x^{2} + (a - b + 2d)x + (a - b)d + d^{2}$$

Le produit et la somme des valeurs propres sont donc donnés par :

$$\lambda_1 \lambda_2 = (a-b)d + d^2 \quad \lambda_1 + \lambda_2 = -(a-b+2d)$$

Etant donné que le taux de dilution d est une quantité strictement positive, on peut vérifier après quelques calculs que les équilibres du système sont hyperboliques si $(a - b) \neq -d$. On observe que

- si $\lambda_1 + \lambda_2 = -[(a-b)+2d] > 0$, alors nécessairement $\lambda_1 \lambda_2 = d[(a-b)+d] < 0$ et donc l'équilibre est un col.
- Si $\lambda_1 + \lambda_2 = -[(a b) + 2d] \leq 0$, alors l'équilibre est un col si $-2d \leq (a b) < -d$, et un noeud attractif si (a b) > -d. Par contre, l'équilibre ne peut pas être un foyer, car il est impossible d'avoir $\lambda_1 \lambda_2 \geq \frac{1}{4}(\lambda_1 + \lambda_2)^2$.

Cette analyse est résumée dans le tableau 8.6 et la figure 8.7.

	Nature des équilibres hyperboliques	
(a-b) < -d	col	
(a-b) > -d	noeud attractif	

8.3. Trajectoires périodiques et cycles limites

A partir des tableaux de la section 8.2, on peut tirer les observations suivantes.

- 1. Pour un système linéaire de dimension deux, les équilibres *attractifs* sont soit un noeud soit un foyer, soit enfin une droite d'équilibres non isolés. Dans chacun de ces cas, le bassin d'attraction est le plan de phase tout entier.
- 2. Lorsque l'équilibre est répulsif, les trajectoires du système divergent lorsque le temps *t* tend vers l'infini.
- 3. Lorsque l'équilibre d'un système linéaire est un centre, toutes les trajectoires du système sont périodiques et le rayon des trajectoires dépend des conditions initiales. Un système linéaire présentant des trajectoires périodiques est structurellement instable, et donc la moindre perturbation du système peut faire disparaître ces trajectoires périodiques.

Aucune de ces observations n'est vérifiée génériquement dans le cas de systèmes non linéaires. En effet, les deux premières concernent un comportement *global* des trajectoires, et nous avons vu que ce n'est que localement, dans le voisinage d'un équilibre hyperbolique, que les trajectoires d'un système non linéaire se comportent comme celles de l'approximation linéaire de ce système. L'objet de cette section est de montrer que pour des systèmes non linéaires, il existe d'autres ensembles attractifs et notamment des trajectoires périodiques. On montrera en outre que ces ensembles attractifs sont structurellement stables. Ceci est une propriété très intéressante des systèmes non linéaires qui est utilisée pour la conception de circuits oscillateurs.

Exemple 8.8. Circuit RLC à diode tunnel

La figure 8.8 représente un oscillateur à diode tunnel. C'est un circuit électrique RLC comprenant des dipôles linéaires (une source de tension constante E, une résistance linéaire R variable, une inductance linéaire L = 1H, une capacité linéaire

FIGURE 8.8 – Oscillateur à diode tunnel

C = 1F) ainsi qu'une résistance non linéaire (diode tunnel) dont la caractéristique courant-tension $i = h(v) = 2v^3 - 6v^2 + 5v$ a l'allure de la courbe représentée à la figure 8.11. L'entrée u de ce système est la résistance variable R. Comme nous

 $\label{eq:FIGURE} {\rm Figure~8.9-Caract{\'e}ristique~courant-tension~de~la} \\ diode~tunnel$

l'avons vu au chapitre 3, les variables d'état du système sont le courant $x_1 = i$ dans l'inductance et la tension $x_2 = v$ aux bornes de la capacité. On obtient les équations d'état suivantes :

$$\dot{x}_1 = -ux_1 - x_2 + E$$

 $\dot{x}_2 = x_1 - h(x_2),$

et les équilibres possibles sont caractérisés par

$$\bar{x}_1 = \frac{E - \bar{x}_2}{\bar{u}}$$
$$\bar{x}_1 = h(\bar{x}_2).$$

En représentant dans le plan de phase les graphes des courbes $\bar{x}_1 = (E - \bar{x}_2)/\bar{u}$ et $\bar{x}_1 = h(\bar{x}_2)$, on constate que, pour une diode de caractéristique donnée, deux configurations sont possibles selon les valeurs respectives de \bar{u} et E. Si la pente de la droite $(-1/\bar{u})$ est suffisamment raide, il n'y aura qu'un seul point d'équilibre (figure 8.10.a). Par contre, si cette pente est inférieure à celle de la tangente au point d'inflexion de la courbe, il y aura un, deux ou trois équilibres possibles suivant la valeur de E (figure 8.10.b).

FIGURE 8.10 – Configurations d'équilibres pour le circuit avec diode tunnel

On peut à nouveau étudier l'allure des trajectoires au voisinage des équilibres en calculant les valeurs propres de la matrice Jacobienne du système :

$$A = \left(\begin{array}{cc} -\bar{u} & -1\\ 1 & -h'(\bar{x}_2) \end{array}\right).$$

Le produit et la somme des valeurs propres sont donnés par

$$\lambda_1 \lambda_2 = \bar{u} h'(\bar{x}_2) + 1, \quad \lambda_1 + \lambda_2 = -(\bar{u} + h'(\bar{x}_2))$$

et on observe que le signe des valeurs propres ne dépend pas de E mais seulement des pentes respectives des deux graphes de l'une ou l'autre des figures 8.10.

Examinons en détail les équilibres :

a. Pour la figure 8.10.a, il n'y a qu'un seul équilibre. Si celui-ci se trouve à gauche du maximum local de la courbe $h(x_2)$ ou à droite du minimum local de celle-ci, le produit des valeurs propres est positif, la somme est négative et l'équilibre correspondant est donc un noeud ou un foyer attractif.

- **b.** Toujours pour la première figure, si l'équilibre se trouve entre le maximum et le minimum locaux, on a $-1/\bar{u} < h'(\bar{x}_2) < 0$ et le produit des valeurs propres est donc toujours positif. Quant à la somme, elle sera négative et l'équilibre correspondant dès lors attractif si $|h'(\bar{x}_2)| < \bar{u}$ (ce qui correspond à une valeur de \bar{u} importante, c.à.d. une résistance fortement dissipative qui assure la stabilité du circuit). Par contre, si $|h'(\bar{x}_2)| > \bar{u}$, la somme des valeurs propres est positive et l'équilibre correspondant est répulsif.
- c. Pour la figure 8.10.b, les équilibres à gauche du maximum local de $h(x_2)$ et à droite du minimum local sont tels que le produit des valeurs propres est positif et la somme des valeurs propres est négative. L'équilibre correspondant est donc un noeud ou un foyer attractif.
- d. Quant à l'équilibre éventuel compris entre maximum et minimum, il vérifie $h'(\bar{x}_2) < -1/\bar{u} < 0$. Le produit des valeurs propres est négatif et l'équilibre correspondant est un col.

Comme on peut le constater, l'équilibre est répulsif dans différents cas. On peut alors s'interroger sur ce que deviennent les trajectoires qui s'éloignent de ce point d'équilibre. Considérons les valeurs numériques particulières suivantes :

$$\bar{u} = 0.5,$$

 $E = 1.5,$
 $h(v) = 2v^3 - 6v^2 + 5v.$

On peut vérifier que pour ces valeurs particulières, $(\bar{x}_1, \bar{x}_2, \bar{u}) = (1, 1, 0.5)$ est le seul équilibre du système, et qu'il s'agit d'un équilibre répulsif (cas **b**. ci-dessus).

En simulant le système de deux équations différentielles pour différentes conditions initiales, on obtient les orbites illustrées à la figure 8.11. Il apparaît clairement que toutes les orbites calculées (on peut penser que les autres se comporteraient de la même manière) s'enroulent autour d'une orbite périodique. Ce système ne possède donc pas d'équilibre attractif, mais il existe une *orbite fermée* qui est attractive. C'est ce qu'on appelle un cycle limite. La figure 8.12 illustre les trajectoires (état en fonction du temps) et montre bien qu'elles convergent (rapidement) vers des trajectoires périodiques dont la période et l'amplitude ne dépendent pas des conditions initiales.

Asymptotiquement, le système connaîtra donc des oscillations d'amplitude constante, quelle que soit la valeur des conditions initiales, contrairement à ce qui se passe pour un système linéaire possédant un équilibre de type centre. En fait, c'est exactement ce que l'on cherche à obtenir lorsque l'on construit un oscillateur : des oscillations d'amplitude constante indépendamment des conditions initiales, qu'on ne peut donc obtenir qu'avec un système non linéaire. Enfin, on peut aussi montrer que ce cycle limite est structurellement stable, ce qui est également une propriété intéressante pour la conception d'un oscillateur.

 ${\rm Figure}~8.11$ – Cycle limite pour le circuit à diode tunnel

 Figure 8.12 – Trajectoires du circuit à diode tunnel

Nous formalisons ci-dessous quelques-unes des notions qui viennent d'être décrites dans l'exemple précédent. Considérons un système plan

$$\dot{x} = f(x, \bar{u})$$

avec entrée constante \bar{u} et notons $x(t, x_0, \bar{u})$ la solution au temps t avec $x(0) = x_0$.

Définition 8.9. Point limite

Le point z est un point limite de y pour le système dynamique soumis à une entrée constante \bar{u} s'il existe une suite $\{t_n\}$ dans \mathbb{R} telle que $t_n \to \infty$ lorsque $n \to \infty$ et $\lim_{n\to\infty} x(t_n, y, \bar{u}) = z$.

Conformément à cette définition, un équilibre est donc un point limite de tout point dans son bassin d'attraction. Mais la notion de point limite est plus générale comme nous le constaterons ci-dessous.

Définition 8.10. Cycle limite

Un cycle limite est une orbite fermée γ telle qu'un point de γ est un point limite d'un autre point du plan de phase n'appartenant pas à γ .

Cette définition montre que lorsqu'une orbite fermée est un cycle limite, tout point de cette orbite est un point limite, et donc que la trajectoire du système s'approchera de plus en plus de chacun des points de cette orbite fermée, à des instants déterminés.

Nous pouvons énoncer maintenant quelques résultats permettant d'établir l'existence de trajectoires périodiques et de cycles limites. Ces résultats ne sont valables que pour les systèmes plans (alors qu'il existe également des cycles limites pour des systèmes d'ordre supérieur). La raison en est que les démonstrations de ces résultats reposent sur le fait qu'en dimension 2, une orbite fermée dans le plan de phase divise ce plan en une région intérieure à l'orbite et une région extérieure, ce qui n'est bien sûr plus vrai dans un espace de phase de dimension supérieure à 2. Le premier résultat est une condition *suffisante* de *non-existence* de trajectoire périodique (et donc de cycle limite).

Théorème 8.11. Bendixson

Soit D un domaine simplement connexe² dans \mathbb{R}^2 . Si

$$divf \triangleq rac{\partial f_1}{\partial x_1} + rac{\partial f_2}{\partial x_2}$$

est non identiquement nulle dans un sous-domaine de *D* et ne change pas de signe dans ce sous-domaine, alors *D* ne contient pas d'orbite fermée.

^{2.} un domaine simplement connexe dans $\mathbb{I}\!\!R^2$ est un domaine dont la frontière peut être obtenue comme déformation continue d'un cercle.

Le deuxième résultat permet, lui, de mettre en évidence l'existence d'un cycle limite.

Théorème 8.12. Poincaré-Bendixson

Si E est un sous ensemble fermé et borné de \mathbb{R}^2 , invariant pour le système $\dot{x} = f(x, \bar{u})$, et si γ est une orbite qui démarre dans E, alors :

- i) Si E ne contient pas de point d'équilibre, alors γ est une orbite périodique ou converge vers un cycle limite.
- ii) Si *E* ne contient pas d'orbite périodique mais contient un point d'équilibre unique, cet équilibre est globalement attractif dans *E*.

Ce théorème peut être utilisé effectivement pour démontrer l'existence d'un cycle limite. Pour ce faire, on cherche d'abord un ensemble fermé borné et invariant. Pour vérifier que l'ensemble est bien invariant, on montre que sur la frontière de cet ensemble, le champ de vecteurs pointe vers l'intérieur. Ensuite, si on a pu exclure la présence d'équilibres dans cet ensemble, celui-ci doit nécessairement contenir un cycle limite, ou ne contenir que des trajectoires périodiques.

Exemple 8.13. Circuit à diode tunnel (suite)

Nous reprenons le circuit déjà décrit avec les mêmes valeurs numériques que précédemment, qui conduisent à un équilibre unique répulsif $(\bar{x}_1, \bar{x}_2, \bar{u}) = (1, 1, E-1)$, avec E > 1. Prenons maintenant dans le plan de phase un cercle centré en (0,0) et de rayon suffisamment grand et montrons que, sur ce cercle, le champ de vecteurs pointe vers l'intérieur. Il s'agit donc de montrer que le produit scalaire du champ de vecteurs et de la normale au cercle est négatif : $PS = x_1 f_1(x_1, x_2, \bar{u}) + x_2 f_2(x_1, x_2, \bar{u}) < 0$. Choisissons comme rayon $r = \sqrt{2} \frac{E}{E-1}$ (voir figure 8.13). Le produit scalaire vaut $PS = -(E-1)x_1^2 + Ex_1 - x_2h(x_2)$. Remarquons que la quantité $-x_2h(x_2)$ est toujours strictement négative sauf en $x_2 = 0$. Pour $x_1 \leq 0, PS < 0$. De même, pour $x_1 \geq \frac{E}{E-1}, Ex_1 \leq (E-1)x_1^2$ et PS < 0. Il reste à étudier la portion de cercle où $x_1 < \frac{E}{E-1}, x_2 > \frac{E}{E-1}$. Un petit calcul permet de vérifier que $|h(x_2)| > |x_2|$ et que les inégalités suivantes sont donc vérifiées :

$$x_2 h(x_2) > x_2^2 > \frac{E^2}{(E-1)^2}$$
$$Ex_1 < \frac{E^2}{E-1} < \frac{E^2}{(E-1)^2}$$

et donc PS < 0. Sur ce cercle de rayon r, le champ de vecteurs est donc rentrant. Par ailleurs, comme l'équilibre (1, 1, E - 1) est répulsif, on peut prendre un cercle suffisamment petit autour de cet équilibre tel que le champ de vecteurs évalué sur ce cercle pointe vers l'extérieur. Si l'on considère maintenant le domaine formé de l'anneau (non centré) compris entre le petit cercle et le grand, il s'agit bien d'un ensemble invariant puisque sur la frontière de cet ensemble, le champ de

 $\label{eq:FIGURE 8.13} F \mbox{IGURE 8.13} - Ensemble \mbox{ invariant pour le circuit à diode tunnel}$

vecteurs pointe vers l'intérieur du domaine. Ce domaine ne comprenant aucun équilibre, il doit donc contenir un cycle limite (ou ne contenir que des trajectoires périodiques).

8.4. Bifurcations

Nous avons choisi d'étudier dans ce chapitre l'allure des trajectoires de systèmes plans pour une valeur constante de l'entrée, \bar{u} . Cette valeur n'étant pas nécessairement fixée a priori, il est intéressant d'analyser dans quelle mesure les trajectoires seront influencées par des changements de \bar{u} . Le théorème 8.6 nous donne déjà une indication. Tant que l'équilibre autour duquel on analyse les trajectoires est hyperbolique, de petites variations de \bar{u} ne déplaceront pas beaucoup les valeurs propres de la matrice d'état de l'approximation linéaire du système, et l'allure des trajectoires restera similaire. Mais en faisant varier l'entrée constante \bar{u}_{1} il peut arriver que les valeurs propres de la matrice d'état atteignent l'axe imaginaire du plan complexe, et dans ce cas il faut s'attendre à une modification fondamentale de l'allure des trajectoires. Plus globalement, les diagrammes d'équilibre étudiés au chapitre précédent montrent également qu'en faisant varier \bar{u} , on peut modifier le nombre de points d'équilibre du système, autant que leur nature. L'étude des modifications de la nature et/ou du nombre des équilibres en fonction de l'évolution de l'entrée du système relève de ce qu'on appelle la théorie des bifurcations, et l'entrée constante \bar{u} est alors appelée paramètre de bifurcation. Nous illustrons ci-dessous ce concept en présentant quatre types de bifurcations qui se rencontrent dans les systèmes plans.

8.4.1. Bifurcation de Hopf

Exemple 8.14. Circuit à diode tunnel (suite)

Reprenons à nouveau l'exemple du circuit à diode tunnel en faisant varier l'entrée \bar{u} (c.à.d. la résistance variable R), avec une source de tension constante E = 1.5. La figure 8.14 illustre comment l'équilibre unique se déplace lorsque \bar{u} varie. Le tableau suivant caractérise le type d'équilibre rencontré en fonction de \bar{u} . Dès lors, si l'on part d'une valeur de la résistance variable \bar{u} suffisamment grande, telle que le point d'équilibre se trouve à gauche du premier sommet de la courbe caractéristique de la diode, et que l'on diminue progressivement cette valeur, on passe successivement par les configurations suivantes : un foyer attractif, un foyer répulsif (associé à un cycle limite), un foyer attractif. Au moment des deux transitions entre foyer attractif et répulsif, le système passe par une valeur telle que le point d'équilibre n'est pas hyperbolique.

La bifurcation que nous venons de mettre en évidence (passage d'un foyer attractif à un foyer répulsif accompagné d'un cycle limite, ou l'inverse) est appelée

FIGURE 8.14 – Equilibre du circuit à diode tunnel lorsque la résistance R varie.

\bar{u}	\bar{x}_2	$h'(ar{x}_2)$	valeurs	type
			propres	d'équilibre
$\bar{u} > 0.7139$	$\bar{x}_2 < 0.5918$	$h'(\bar{x}_2) > 0$	$\lambda_{1,2} \in C^-$	foyer
				attractif
$0.1261 < \bar{u}$	$0.5918 < \bar{x}_2$	$h'(\bar{x}_2) < 0$	$\lambda_{1,2} \in C^+$	foyer
<.7139	< 1.4082			répulsif
$\bar{u} < 0.1261$	$\bar{x}_2 > 1.4082$	$2.5 > h'(\bar{x}_2) > 0$	$\lambda_{1,2} \in C^-$	foyer
				attractif

8.4. Bifurcations

bifurcation de Hopf. Le théorème suivant garantit d'ailleurs l'existence d'un cycle limite. Afin de l'énoncer de façon précise, formalisons ce qui précède. Soit un système plan possédant une famille d'équilibres uniques (\bar{x}, \bar{u}) paramétrée par \bar{u} . On suppose qu'il existe une valeur \bar{u}^* de \bar{u} telle que les valeurs propres de la matrice Jacobienne évaluée en cet équilibre ont une partie réelle nulle et une partie imaginaire non nulle. Ces valeurs propres dépendent continûment de \bar{u} , au moins dans un voisinage de \bar{u}^* , et on les notera donc

$$\lambda_i(\bar{u}) = \alpha(\bar{u}) \pm i\beta(\bar{u}).$$

On suppose en outre que $\frac{d\alpha(\bar{u}^*)}{d\bar{u}} > 0.$

Théorème 8.15. Avec les hypothèses qui précèdent, si pour des valeurs de \bar{u} proches de \bar{u}^* , l'équilibre est attractif pour $\bar{u} < \bar{u}^*$ et répulsif pour $\bar{u} > \bar{u}^*$ alors il existe une orbite fermée pour $\bar{u} > \bar{u}^*$ ou pour $\bar{u} < \bar{u}^*$. En particulier, si (\bar{x}^*, \bar{u}^*) est localement attractif, alors il existe un cycle limite attractif autour de (\bar{x}, \bar{u}) pout tout $\mu = \bar{u} - \bar{u}^* > 0$, suffisamment petit. De plus, l'amplitude du cycle limite augmente lorsque μ augmente.

Remarque 8.16. Tel quel, l'énoncé du théorème reste ambigu quant à la nature (attractive ou répulsive) de l'orbite fermée qui apparaît. On peut lever cette ambiguïté au prix d'un énoncé plus technique faisant apparaître explicitement les termes d'ordre trois du système non linéaire (voir par exemple Guckenheimer et Holmes, *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*, Springer-Verlag, 1983).

8.4.2. Bifurcation transcritique

Considérons la réaction

$$X_1 + X_2 \to 2X_2$$

se produisant dans un réacteur à volume constant, alimenté en réactif X_1 à la concentration x_1^{in} , avec un taux de dilution u.

Le modèle d'état du système (en supposant une cinétique de réaction décrite par la loi d'action des masses) est donné par

$$\dot{x}_1 = -kx_1x_2 + u(x_1^{in} - x_1)$$

$$\dot{x}_2 = kx_1x_2 - ux_2.$$

Le système possède deux équilibres distincts pour chaque valeur constante de l'entrée $\bar{u} \neq k x_1^{in} : (x_1^{in}, 0, \bar{u})$ et $(\bar{u}/k, x_1^{in} - \bar{u}/k, \bar{u})$, comme illustré à la figure 8.15. On vérifie facilement que le premier équilibre est attractif si $\bar{u} > k x_1^{in}$ et est un col sinon. Inversement, le deuxième équilibre est attractif pour les petites valeurs de \bar{u} et devient un col si $\bar{u} > k x_1^{in}$. Il y a donc ici aussi une bifurcation, plus

FIGURE 8.15 – Diagramme d'équilibres - Bifurcation transcritique

simple toutefois, les caractéristiques des deux équilibres étant échangées lorsque le paramètre de bifurcation \bar{u} franchit la valeur critique kx_1^{in} . Cette bifurcation est appelée *bifurcation transcritique*. On vérifie également qu'à cette valeur critique, l'équilibre (unique) est non hyperbolique.

8.4.3. Bifurcation col-noeud

Le troisième type de bifurcation est illustré par l'exemple du réacteur chimique exothermique décrit à la section 7.1. Rappelons que le diagramme d'équilibre reliant la température d'équilibre du réacteur, \overline{T} , à l'apport calorifique externe, \overline{u} , a l'allure illustrée à la figure 8.16. On constate donc que pour de faibles valeurs de \overline{u} ,

FIGURE 8.16 – Diagramme d'équilibres - Bifurcation col-noeud

le système possède un seul point d'équilibre correspondant à une température d'équilibre basse et à une grande concentration de réactif dans le réacteur (et

8.4. Bifurcations

dès lors une faible concentration du produit de la réaction). On peut vérifier que cet équilibre est attractif. Puis, pour une valeur critique de \bar{u} que l'on repère facilement sur le diagramme d'équilibre, le système passe à trois valeurs d'équilibre pour la température, celle du milieu correspondant à un équilibre attractif et les deux autres à des équilibres répulsifs. Enfin, en augmentant encore \bar{u} , on franchit une nouvelle valeur critique au delà de laquelle le système ne possède plus qu'un seul équilibre, attractif également. Il s'agit ici de *bifurcation col-noeud*. A partir d'une valeur critique de l'entrée (c.à.d. du paramètre de bifurcation) apparaissent deux nouveaux équilibres, l'un d'eux étant un noeud attractif, l'autre étant un col. A la valeur critique, l'équilibre n'est pas hyperbolique.

8.4.4. Bifurcation fourche

Le mécanisme illustré à la figure 8.17 est un « régulateur de Watt ». Ce dispositif peut servir à mesurer une vitesse de rotation à partir d'un pointeur fixé sur l'axe vertical, ou, et c'est pour cela qu'il a été inventé, à réguler cette vitesse si le pointeur est relié à une vanne d'alimentation du moteur faisant tourner le dispositif. On peut vérifier que les équations décrivant le mouvement du système

FIGURE 8.17 – Régulateur de Watt

s'écrivent :

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = u^2 \cos x_1 \sin x_1 - k \sin x_1 - K x_2$

où $x_1 = \theta$ est la position angulaire des pendules symétriques et u est la vitesse de rotation.

Ce dispositif a un équilibre en $(x_1, x_2, u) = (0, 0, \bar{u})$ et, si $\bar{u}^2 > k$, un autre équilibre en $(\bar{x}_1 = \arccos \frac{k}{\bar{u}^2}, 0, \bar{u})$ avec $\bar{x}_1 \in [0, \frac{\pi}{2}]$. En fait $(-\bar{x}_1, 0, \bar{u})$ est aussi un équilibre qui correspondrait à la permutation des deux pendules, ce qui est (physiquement) impossible mais conceptuellement possible, d'après les équations ci-dessus.

La matrice Jacobienne du système autour de l'équilibre $(0, 0, \bar{u})$ s'écrit :

$$A = \left(\begin{array}{cc} 0 & 1\\ \bar{u}^2 - k & -K \end{array}\right)$$

Cet équilibre est attractif pour $\bar{u}^2 < k$ et répulsif pour $\bar{u}^2 > k$. Pour $\bar{u}^2 = k$, l'équilibre n'est pas hyperbolique.

Autour des deux autres équilibres, la matrice Jacobienne devient :

$$A = \begin{pmatrix} 0 & 1\\ \frac{k^2}{\bar{u}^2} - \bar{u}^2 & -K \end{pmatrix} \text{ avec } \bar{u}^2 > k \Rightarrow \bar{u}^4 > k^2$$

Ces équilibres sont donc attractifs. Le diagramme de bifurcation peut alors s'illustrer comme indiqué à la figure 8.18. Il s'agit d'une bifurcation de type fourche.

8.4.5. Généralisations

Nous avons décrit dans cette section les bifurcations relatives à des systèmes d'ordre deux dépendant d'un paramètre (la valeur de \bar{u}). Ces bifurcations sont caractérisées par la traversée de l'axe imaginaire du plan complexe par une valeur propre réelle de l'approximation linéaire ou par une paire de valeurs propres complexes conjuguées (bifurcation de Hopf). Lorsqu'un système d'ordre plus grand que deux dépend d'un paramètre variable, il est rare que plus d'une valeur propre réelle (ou plus d'une paire de valeurs propres complexes conjuguées) franchisse l'axe imaginaire pour la même valeur du paramètre de bifurcation. Ce que nous venons de décrire s'observe dès lors aussi, dans des espaces de phase plus compliqués à visualiser, pour des systèmes d'ordre supérieur.

8.5. Exercices

Exercice 8.1. Un système mécanique

On considère un robot manipulateur à un segment relié à un chassis fixe par une articulation rotoïde. Le robot se déplace dans un plan vertical. Il est actionné par un moteur produisant un couple appliqué à l'articulation et est soumis à un couple de frottement visqueux. La flexibilité est négligée.

- 1. Etablir le modèle d'état du système.
- 2. Déterminer les configurations d'équilibre.
- 3. Analyser le comportement des trajectoires au voisinage des équilibres en cas de frottement visqueux linéaire quand le couple appliqué est constant.
- 4. Que peut-on dire des équilibres quand le frottement visqueux est quadratique?

Exercice 8.2. Un réacteur chimique

Soit un réacteur continu parfaitement mélangé et à volume constant dans lequel se déroule une réaction chimique irréversible mettant en oeuvre deux espèces A et B:

$$A \longrightarrow B.$$

Le réacteur est alimenté uniquement avec l'espèce A, à débit volumique constant strictement positif. La variable d'entrée est la concentration d'alimentation du réacteur. La cinétique de réaction est une fonction des concentrations des deux espèces : $r(x_A, x_B)$.

- 1. Etablir le modèle d'état du système.
- 2. Montrer que, à entrée constante, l'équilibre est unique et stable si la cinétique obéit à la loi d'action des masses avec inhibition hyperbolique par le produit. Est-ce un noeud ou un foyer?
- Montrer que le système peut avoir des équilibres instables si la cinétique est une fonction monotone croissante de ses arguments.

Exercice 8.3. Un système à compartiments

Quelles sont les conditions sur la structure du graphe d'un système linéaire à deux compartiments pour que le système ait une ou deux valeur propres nulles ? Quel est alors le comportement du système (détailler les différents cas possibles) ?

Exercice 8.4. Génératrice DC avec auto-excitation

On considère une génératrice DC avec auto-excitation. La tension induite est, à vitesse constante, une fonction *monotone croissante bornée* du courant d'excitation $E(I_s)$ telle que E(0) > 0. La génératrice débite sur une charge résistive. L'entrée de commande du système est la vitesse de rotation de la génératrice.

- 1. Déterminer le modèle d'état du système.
- Montrer qu'on peut choisir le sens de référence des courants pour que le système soit positif.
- 3. Quelle allure doit avoir la fonction $E(I_s)$ pour qu'il y ait trois équilibres hyperboliques isolés à vitesse de rotation constante. Discuter la stabilité de ces équilibres.
- Etudier les bifurcations de la configuration d'équilibre en fonction de la vitesse de rotation.

Exercice 8.5. Circuit électrique RLC

On considère le circuit électrique linéaire suivant :

FIGURE 8.19 – Circuit électrique RLC

- où $R_2 = 1\Omega, C = 1F$ et L = 1H.
- 1. Ecrire un modèle d'état.
- 2. Déterminer les équilibres.
- 3. Quelles sont les conditions sur R_1 pour que chaque équilibre soit un noeud, un foyer ou un col?

On considère le même circuit électrique mais avec $R_1 = 1\Omega$ et R_2 une résistance non linéaire décrite par la relation tension-courant $v_r = i_r^3 - 3i_r^2 + i_r$

- 1. Calculer les équilibres du système.
- 2. Caractériser le comportement du système au voisinage de ces équilibres.

Exercice 8.6. Modélisation d'une activité de pêche.

Dans un lac vit une espèce de poissons dont la croissance obéit à une loi logistique. Les poissons sont capturés par des pêcheurs suivant un principe d'action des masses. Les pêcheurs sont attirés vers le lac avec un taux directement proportionnel à la quantité de poissons dans le lac. Par contre les pêcheurs sont découragés de pêcher avec un taux directement proportionnel au nombre de pêcheurs déjà présents.

- 1. Etablir un modèle d'état du système.
- 2. Etudier l'existence et la stabilité des états d'équilibre.

180 Chapitre 8

Systèmes plans
Chapitre 9

Stabilité des équilibres

Ce chapitre traite de la stabilité des équilibres. Plus précisément, on s'intéresse au comportement des trajectoires du système au voisinage des équilibres. Soit un système dynamique décrit par son modèle d'état :

$$\dot{x} = f(x, u). \tag{9.1}$$

On suppose que le système possède un équilibre en (\bar{x}, \bar{u}) . On se pose les deux questions suivantes :

- a : si l'entrée est maintenue égale à sa valeur d'équilibre \bar{u} et si l'état initial $x(t_0)$ est dans le voisinage de la valeur d'équilibre \bar{x} , comment vont se comporter les trajectoires du système? Sous quelle conditions les trajectoires vont elles converger vers \bar{x} ?
- b : Si l'entrée u(t) est proche de \bar{u} (mais pas nécessairement constante), que peut-on dire des trajectoires du système ? Sous quelles conditions les trajectoires x(t) resteront-elles proches de \bar{x} ?

9.1. Définitions

Définition 9.1. Equilibre stable

L'équilibre (\bar{x}, \bar{u}) est un équilibre stable du système (9.1) si

 $\forall \epsilon > 0 \ \exists \delta > 0 \ \mathbf{t.q.} \| x(t_0) - \bar{x} \| < \delta \Rightarrow \| x(t, x(t_0), \bar{u}) - \bar{x} \| < \epsilon \ \forall t \ge t_0.$

Si cette condition n'est pas satisfaite, l'équilibre est instable.

Cette définition s'interprête de la manière suivante. On souhaite caractériser le fait que la trajectoire x(t) reste proche du point d'équilibre \bar{x} pour tout $t \ge t_0$ lorsque l'entrée est constante $(u(t) = \bar{u} \ \forall t \ge t_0)$. Pour cela, on mesure la proximité avec la norme $\| \|$ et on impose que les solutions x(t) restent à l'intérieur de la région délimitée par $\|x(t) - \bar{x}\| < \epsilon$, c'est-à-dire dans un "tube" de rayon ϵ autour de la trajectoire $x(t) = \bar{x}$. Si cet objectif est réalisable pour une condition initiale $x(t_0)$ proche de l'équilibre (c'est-à-dire $\|x(t_0) - \bar{x}\| < \delta$), alors on dit que l'équilibre est stable. Sinon, on dit qu'il est instable.

Cette définition est la forme la plus faible de stabilité considérée dans ce chapitre. En particulier, elle n'implique pas que les trajectoires x(t) convergent vers le point d'équilibre.

Définition 9.2. Equilibre attracteur

L'équilibre (\bar{x}, \bar{u}) est un équilibre attracteur de (9.1) si

$$\exists \delta > 0 \text{ t.q.} \|x(t_0) - \bar{x}\| < \delta \Rightarrow \lim_{t \to \infty} \|x(t, x(t_0), \bar{u}) - \bar{x}\| = 0. \quad \Box$$

Un équilibre attracteur \bar{x} est donc un point vers lequel convergent les solutions x(t) si elles démarrent suffisament près de \bar{x} . Il faut noter que stabilité et attractivité sont deux notions différentes et qu'elles ne s'impliquent pas mutuellement.

Définition 9.3. Equilibre asymptotiquement stable

L'équilibre (\bar{x}, \bar{u}) est un *équilibre asymptotiquement stable* s'il est stable et attracteur.

Un ensemble d'états initiaux $x(t_0)$ à partir desquels les trajectoires convergent vers un équilibre asymptotiquement stable est appelé bassin d'attraction. La stabilité asymptotique est la propriété qui est généralement recherchée en pratique. Il faut cependant remarquer que la définition ci-dessus ne nous dit rien sur la vitesse à laquelle la trajectoire x(t) converge vers l'équilibre. C'est pourquoi, on introduit la notion suivante de stabilité exponentielle qui permet de caractériser cette vitesse.

Définition 9.4. Stabilité exponentielle

L'équilibre (\bar{x}, \bar{u}) est un équilibre exponentiellement stable si

$$\begin{aligned} \forall \epsilon > 0 \ \exists \ a > 0, b > 0 \ \text{et} \ \delta > 0 \ \text{t.q.} \\ \|x(t_0) - \bar{x}\| < \delta \Rightarrow \|x(t, x(t_0), \bar{u}) - \bar{x}\| \le a \|x(t_0) - \bar{x}\| e^{-bt} \ \forall t \ge t_0. \quad \Box \end{aligned}$$

Il est évident que la stabilité exponentielle implique la stabilité asymptotique mais l'inverse n'est pas nécessairement vrai.

9.2. Première méthode de Lyapunov (méthode indirecte)

La première méthode de Lyapunov est basée sur l'examen de la linéarisation du système $\dot{x} = f(x, \bar{u})$ autour de l'équilibre (\bar{x}, \bar{u}) . Plus précisément, on examine les valeurs propres $\lambda_i(A)$ de la matrice Jacobienne évaluée à l'équilibre :

$$A = \frac{\partial f}{\partial x}(\bar{x}, \bar{u}).$$

Selon cette méthode, les propriétés de stabilité de (\bar{x}, \bar{u}) s'expriment comme suit.

Théorème 9.5. Première méthode de Lyapunov.

- 1. Si toutes les valeurs propres de la matrice Jacobienne ont une partie réelle strictement négative ($\forall i, Re(\lambda_i(A)) < 0$), l'équilibre (\bar{x}, \bar{u}) est exponentiellement stable.
- 2. Si la matrice Jacobienne possède au moins une valeur propre à partie réelle strictement positive ($\exists i, Re(\lambda_i(A)) > 0$), l'équilibre (\bar{x}, \bar{u}) est instable. \Box

Le théorème ne permet pas de dire si l'équilibre est stable ou instable quand la matrice Jacobienne comporte au moins une valeur propre nulle et aucune valeur propre à partie réelle strictement positive. Dans ce cas, les trajectoires du système convergent vers un sous-espace (une variété) dont la dimension est le nombre de valeurs propres nulles de la matrice Jacobienne et la stabilité de l'équilibre peut être étudiée dans ce sous-espace par la seconde méthode.

9.3. Seconde méthode de Lyapunov (méthode directe)

Comme nous venons de le voir, la première méthode de Lyapunov est simple à appliquer mais elle ne permet d'analyser la stabilité des équilibres que très partiellement. En outre elle ne donne aucune indication sur la taille des bassins d'attraction. La seconde méthode est plus difficile à mettre en oeuvre mais, en contrepartie, est d'une portée beaucoup plus générale. Elle est basée sur la définition d'une fonction particulière, notée V(x) et appelée fonction de Lyapunov, qui est décroissante le long des trajectoires du système à l'intérieur du bassin d'attraction. Avant de donner les différents théorèmes de stabilité, nous commençons par un exemple.

Exemple 9.6. Un bras de robot à un degré de liberté.

On considère un bras de robot à un degré de liberté, avec frottement visqueux linéaire et soumis à un couple constant (voir figure ci-dessous). Le modèle d'état du système est le suivant (voir chapitre 2 et chapitre 8, section 8.3.1) :

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = J^{-1}(-mgb\sin x_1 - kx_2 + \bar{u}).$

Dans ces équations, x_1 est la position angulaire, x_2 la vitesse angulaire, J l'inertie, m la masse, b la distance entre le point d'ancrage et le centre de masse, k le coefficient de frottement et \bar{u} le couple constant appliqué au bras de robot.

Considérons le cas où $0 < \bar{u} < mgb$. Le système possède deux équilibres vérifiant les relations suivantes :

$$\bar{x}_1 = \arcsin(\frac{\bar{u}}{mqb}), \ \bar{x}_2 = 0.$$

En accord avec l'intuition physique et comme on peut le vérifier en examinant les valeurs propres de la matrice Jacobienne, il y un équilibre asymptotiquement stable en position "basse" et un équilibre instable en position "haute" (voir figure 9.2).

FIGURE 9.1 – Bras de robot dans un plan vertical

Considérons la fonction suivante :

$$V(x_1, x_2) = \frac{J}{2}x_2^2 + mgb(1 - \cos x_1) - \bar{u}x_1.$$

Cette fonction a la dimension d'une énergie. En effet le premier terme $(Jx_2^2/2)$ est l'énergie cinétique, le second terme $(mgb(1 - \cos x_1))$ est l'énergie potentielle et le troisième terme $(\bar{u}x_1)$ est l'énergie dépensée par le couple \bar{u} pour élever le bras jusqu'à la position angulaire x_1 . L'équilibre en position "basse" appartient au domaine

$$D = \{ (x_1, x_2) : -\pi/2 < x_1 < \pi/2, -a < x_2 < a \}$$

(a est un réel positif quelconque). Dans ce domaine, la fonction $V(x_1, x_2)$ est une fonction qui satisfait les conditions suivantes :

(i) $V(x_1, x_2) : D \to R$ est continûment dérivable.

- (ii) $V(x_1, x_2) > V(\bar{x}_1, \bar{x}_2)$ pour tout $(x_1, x_2) \neq (\bar{x}_1, \bar{x}_2)$ dans D (c-à-d V est minimum à l'équilibre).
- (iii) $\dot{V}(x_1, x_2) \leq 0$ en dehors de l'équilibre dans D car

$$\dot{V}(x_1, x_2) = \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2$$

= $[mgb \sin x_1 - \bar{u}][x_2] + [Jx_2][J^{-1}(-mgb \sin x_1 - kx_2 + \bar{u}]$
= $-kx_2^2$.

Sous ces conditions, comme nous allons le voir avec le théorème suivant, il existe un voisinage borné de l'équilibre dans lequel $V(x_1, x_2)$ décroit le long des trajectoires du système tant que la vitesse $x_2 \neq 0$ et se rapproche du minimum de Vqui correspond à l'équilibre. On voit donc que l'équilibre est stable au sens de la définition 9.1. On observe cependant que $V(x_1, x_2)$ cesse de décroitre si $x_2 = 0$ (vitesse nulle). Peut-on avoir une vitesse identiquement nulle ailleurs qu'à l'équilibre? En fait non, car une vitesse identiquement nulle implique une accélération identiquement nulle, ce qui implique finalement que le système est à l'équilibre. \Box

Cet exemple illustre l'essentiel de la démarche de la seconde méthode de Lyapunov dont voici le premier théorème.

Théorème 9.7. Stabilité « à la Lyapunov ».

L'équilibre (\bar{x}, \bar{u}) du système $\dot{x} = f(x, \bar{u})$ est stable si il existe une fonction $V(x): D \to R$ continûment différentiable ayant les propriétés suivantes :

- (i) D est un ouvert de R^n et $\bar{x} \in D$;
- (ii) $V(x) > V(\bar{x}) \ \forall x \neq \bar{x} \ dans \ D(V(x) \ est \ minimum \ en \ \bar{x});$
- (iii) $\dot{V}(x) \leq 0 \ \forall x \neq \bar{x} \text{ dans } D.$

En d'autres termes, ce théorème veut dire qu'une condition suffisante pour la stabilité de l'équilibre (\bar{x}, \bar{u}) est qu'il existe une fonction définie positive $V(x) - V(\bar{x})$ dont la dérivée temporelle $\dot{V}(x)$ est semi-définie négative dans un voisinage de \bar{x} . La dérivée temporelle $\dot{V}(x)$ se calcule comme suit :

$$\dot{V}(x) = \frac{dV}{dt} = \frac{\partial V}{\partial x}\dot{x} = \frac{\partial V}{\partial x}f(x,\bar{u}) = \sum_{i=1}^{n}\frac{\partial V}{\partial x_{i}}f_{i}(x,\bar{u}).$$

Les conditions (ii) et (iii) du théorème 9.7 impliquent que, pour une constante c suffisamment proche de $V(\bar{x})$, l'ensemble :

$$\Omega_c = \{ x \in D : V(\bar{x}) \le V(x) \le c \}$$

est un compact (c'est-à-dire un ensemble fermé et borné) invariant. Pour le démontrer, choisissons une constante positive r telle que la boule fermée

$$B_r = \{ x \in R^n : ||x - \bar{x}|| \le r \}$$

soit contenue dans D. Définissons :

$$\alpha = \min_{\|x\|=r} V(x).$$

Il suffit de choisir n'importe quelle constante c dans l'intervalle ouvert $(0, \alpha)$ pour définir un ensemble Ω_c qui est inclus dans B_r et donc compact. Supposons maintenant que $x(t_0) \in \Omega_c$. Alors, par la condition (iii), nous avons :

$$\dot{V}(x) \le 0 \quad \Rightarrow \quad V(\bar{x}) \le V(x(t)) \le V(x(t_0)) \le c \quad \forall t$$

ce qui montre bien que Ω_c est invariant.

L'exemple 9.6 est une application de ce théorème qui montre que l'équilibre du bras de robot est stable. En réalité, nous savons intuitivement que cet équilibre est *asymptotiquement* stable (c'est-à-dire stable et attracteur). Une manière de démontrer qu'un équilibre est asymptotiquement stable est d'avoir une fonction de Lyapunov dont la dérivée temporelle $\dot{V}(x)$ soit strictement définie négative (et pas seulement semi-définie négative comme dans l'exemple 9.6). Dans ce cas, en effet, la fonction de Lyapunov décroit strictement le long des trajectoires du système, jusqu'à atteindre (asymptotiquement) le minimum qui correspond exactement à l'équilibre.

Théorème 9.8. Stabilité asymptotique.

L'équilibre (\bar{x}, \bar{u}) du système $\dot{x} = f(x, \bar{u})$ est asymptotiquement stable si il existe une fonction $V(x) : D \to R$ continûment différentiable ayant les propriétés suivantes :

- (i) D est un ouvert de \mathbb{R}^n et $\bar{x} \in D$;
- (ii) $V(x) > V(\bar{x}) \ \forall x \neq \bar{x} \ dans \ D(V(x) \ est \ minimum \ en \ \bar{x});$
- (iii) $\dot{V}(x) < 0 \ \forall x \neq \bar{x} \text{ dans } D.$

Comme on l'a vu dans l'exemple du bras de robot, il arrive souvent que l'on trouve une fonction de Lyapunov dont la dérivée est seulement semi-définie négative, ce qui ne permet pas de conclure à la stabilité asymptotique en appliquant le théorème précédent. La difficulté provient notamment de ce que, en analysant la fonction $\dot{V}(x)$, on n'exploite pas le fait que les différentes variables d'état x_i ne sont pas indépendantes mais sont reliées par les équations de la dynamique du système. LaSalle a étudié cette question en détail et a formulé un principe d'invariance qui permet d'analyser la stabilité asymptotique des équilibres dans le cas d'une fonction $\dot{V}(x)$ semi-définie négative.

Théorème 9.9. Principe d'invariance de LaSalle.

L'équilibre (\bar{x}, \bar{u}) du système $\dot{x} = f(x, \bar{u})$ est asymptotiquement stable si il existe une fonction $V(x) : D \to R$ continument différentiable ayant les propriétés suivantes :

- (i) D est un ouvert de \mathbb{R}^n et $\bar{x} \in D$;
- (ii) $V(x) > V(\bar{x}) \ \forall x \neq \bar{x} \ dans \ D(V(x) \ est \ minimum \ en \ \bar{x});$
- (iii) $\dot{V}(x) \leq 0 \ \forall x \text{ dans } D$;
- (iv) l'ensemble $S \subset D$ tel que $\dot{V}(x) = 0$ ne contient pas de *trajectoire* du système autre que $x(t) = \bar{x}$.

Exemple 9.10. Un bras de robot à un degré de liberté (suite).

Considérons à nouveau le modèle du bras de robot (voir Exemple 9.6)

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = J^{-1}(-mgb\sin x_1 - kx_2 + \bar{u}),$
(9.2)

pour lequel la fonction d'énergie

$$V(x_1, x_2) = \frac{J}{2}x_2^2 + mgb(1 - \cos x_1) - \bar{u}x_1$$

est une fonction de Lyapunov. Le long des trajectoires du système, la dérivée de la fonction de Lyapunov est semi-définie négative :

$$\dot{V}(x_1, x_2) = -kx_2^2 \le 0.$$

L'ensemble $S \subset D$ tel que $\dot{V}(x) = 0$ est donc le suivant :

$$S = \{ (x_1, x_2) \in D : x_2 = 0 \}.$$

On observe que toute trajectoire du système contenue dans S est telle que la vitesse $x_2(t)$ est identiquement nulle (ce que nous notons $x_2(t) \equiv 0$). Ceci implique immédiatement que $\dot{x}_2(t) \equiv 0$. Par l'équation (9.2), ceci implique que $mgb\sin x_1(t) - \bar{u} \equiv 0$. Et donc que la seule trajectoire contenue dans S est bien la trajectoire d'équilibre. Donc l'équilibre est asymptotiquement stable. Le raisonnement que nous venons de faire se formalise de la manière suivante :

trajectoire
$$(x_1(t), x_2(t)) \in S \Rightarrow x_2(t) \equiv 0$$

 $\Rightarrow \dot{x}_2(t) \equiv 0$
 $\Rightarrow mgb \sin x_1(t) - \bar{u} \equiv 0$
 $\Rightarrow x_1(t) = \bar{x}_1, x_2(t) = \bar{x}_2.$

9.4. Bassin d'attraction et convergence globale

Dans la démonstration du théorème 9.7 nous avons vu que le domaine Ω_c est un invariant du système. Si l'équilibre est asymptotiquement stable, cela veut dire que toute trajectoire qui démarre en un point quelconque de Ω_c converge vers l'équilibre. C'est la raison pour laquelle cet ensemble est appelé "bassin d'attraction". La seconde méthode de Lyapunov nous permet donc de caractériser la taille du bassin d'attraction, information qu'il n'est pas possible d'obtenir par la première méthode. C'est pourquoi il peut être intéressant de chercher une fonction de Lyapunov, même si la stabilité de l'équilibre est facilement démontrée par la linéarisation.

Un cas particulièrement intéressant est quand le point d'équilibre est unique et que le bassin d'attraction contient l'espace d'état tout entier. Dans ce cas, on parle de *stabilité asymptotique globale* dont le théorème suivant explicite les conditions d'existence.

Théorème 9.11. Stabilité asymptotique globale.

L'équilibre (\bar{x}, \bar{u}) du système $\dot{x} = f(x, \bar{u})$ est globalement asymptotiquement stable si il est asymptotiquement stable et si en outre :

(i)
$$D = \mathbb{I}\mathbb{R}^n$$
;
(ii) $|x| \to \infty \Rightarrow |V(x)| \to \infty$.

9.5. L'énergie comme fonction de Lyapunov

Le choix d'une fonction de Lyapunov appropriée pour l'analyse de la stabilité des équilibres d'un système dynamique est en général assez difficile. Comme nous l'a montré l'exemple du robot à un degré de liberté, l'énergie peut constituer un bon point de départ pour certains systèmes physiques. Examinons cela sur quelques exemples.

Systèmes mécaniques

L'équation générale de la dynamique d'un système mécanique est (cfr Chapitre 2)

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + k(q) + h(\dot{q}) = G\bar{u}$$

On considère ici le cas particulier où la matrice cinématique G est constante. Prenons comme fonction $V(q, \dot{q})$ la fonction suivante :

$$V(q,\dot{q}) = \frac{1}{2}\dot{q}^T M(q)\dot{q} + E_p(q) - q^T G\bar{u}$$

Le premier terme est l'énergie cinétique, le deuxième est l'énergie potentielle et le troisième correspond au travail des forces et des couples appliqués. La dérivée de cette fonction le long des trajectoires se calcule comme suit :

$$\dot{V} = \frac{1}{2} \dot{q}^{T} [\dot{M}(q) - 2C(q, \dot{q})] \dot{q} - \dot{q}^{T} h(\dot{q}) = -\dot{q}^{T} h(\dot{q}),$$

(car la matrice $\dot{M}(q) - 2C(q, \dot{q})$ est anti-symétrique, voir chapitre 2). Cette grandeur est bien semi-définie négative pour des choix raisonnables de modèles de frottement visqueux.

Circuits électriques

Prenons comme exemple le circuit RLC non linéaire du chapitre 8 (sec. 8.3.1). Les équations d'état sont :

$$L\dot{x}_1 = -r(x_1) - x_2 + \bar{u},$$

 $C\dot{x}_2 = x_1.$

Dans ces équations, x_1 désigne le courant et x_2 la tension. L et C sont l'inductance et la capacité du circuit tandis que $r(x_1)$ est une résistance non-linéaire. Nous supposons que la fonction $r(x_1)$ est monotone croissante et passe par l'origine r(0) = 0.

Prenons comme fonction de Lyapunov, la fonction suivante qui a la dimension d'une énergie :

$$V(x_1, x_2) = \frac{1}{2}Lx_1^2 + \frac{1}{2}C(x_2 - \bar{u})^2 \ge 0$$

Cette fonction est positive et minimum à l'équilibre $(\bar{x}_1, \bar{x}_2) = (0, \bar{u}) : V(\bar{x}_1, \bar{x}_2) = 0$. D'autre part, on a :

$$\dot{V} = \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2$$
$$= -x_1 r(x_1) \le 0.$$

L'équilibre est donc stable et, en utilisant le principe d'invariance de LaSalle, on peut même conclure à la stabilité asymptotique.

9.6. Systèmes linéaires

Soit le système $\dot{x} = Ax + B\bar{u}$ et un équilibre (\bar{x}, \bar{u}) . On définit comme fonction de Lyapunov $V(x) = (x - \bar{x})^T P(x - \bar{x})$ où P est une matrice symétrique définie

positive.

$$\dot{V}(x) = \dot{x}^{T} P(x - \bar{x}) + (x - \bar{x})^{T} P \dot{x}$$

$$= (\bar{u}^{T} B^{T} + x^{T} A^{T}) P(x - \bar{x}) + (x - \bar{x})^{T} P(Ax + B\bar{u})$$

$$= (x - \bar{x})^{T} A^{T} P(x - \bar{x}) + (x - \bar{x})^{T} PA(x - \bar{x})$$

$$= -(x - \bar{x})^{T} Q(x - \bar{x}),$$
avec $-Q = A^{T} P + PA.$
(9.3)

Cette dernière équation est appelée « équation matricielle de Lyapunov ». Si elle admet une solution Q définie positive, alors la fonction V sera bien une fonction de Lyapunov pour le système. On peut aussi inverser le raisonnement : on se donne une matrice Q définie positive et on s'appuie sur le théorème suivant pour conclure que la fonction V est bien une fonction de Lyapunov pour le système et que l'équilibre est donc asymptotiquement stable.

Théorème 9.12. Soit A une matrice réelle d'ordre n. Pour toute matrice Q définie positive, (9.3) possède une solution unique P définie positive si et seulement si A est une matrice de Hurwitz (toutes ses valeurs propres ont une partie réelle stritement négative).

9.7. Stabilité « Entrée bornée - Etat borné »

Il est souvent illusoire de pouvoir appliquer une entrée parfaitement constante à un système dynamique réel. En pratique, à cause de diverses sources de perturbation et d'incertitude, l'entrée sera généralement un signal u(t) variant légèrement au voisinage de la valeur d'équilibre désirée. Il est dès lors pertinent de s'intéresser à l'évolution de l'état du système lorsque u(t) est un signal borné proche de \bar{u} . Nous commençons par étudier cette question dans le cas d'un système linéaire

$$\dot{x} = Ax + Bu. \tag{9.4}$$

Pour une condition initiale $x(t_0) = x_0$ et une entrée u(t) données, la trajectoire du système s'écrit explicitement

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau.$$

Considérons l'équilibre ($\bar{x} = 0, \bar{u} = 0$). Cet équilibre est asymptotiquement stable si et seulement si la matrice A est Hurwitz. Dans ce cas $||e^{At}||$ est bornée pour tout t et il existe des constantes positives k et λ telles que

$$||e^{A(t-t_0)}|| \le ke^{-\lambda(t-t_0)}.$$

On en déduit

$$\|x(t)\| \le k e^{-\lambda(t-t_0)} \|x_0\| + \int_{t_0}^t e^{-\lambda(t-\tau)} \|B\| \|u(\tau)\| d\tau$$

$$\le k e^{-\lambda(t-t_0)} \|x_0\| + \frac{k \|B\|}{\lambda} \sup_{t_0 \le \tau \le t} \|u(\tau)\|.$$
(9.5)

On voit immédiatement qu'une entrée u(t) bornée, quelle que soit son amplitude, produit bien un état x(t) borné. On observe aussi que l'effet de la condition initiale x_0 s'estompe au cours du temps et que la « borne ultime » de x(t) est donc simplement proportionnelle à la borne de u(t):

$$\limsup_{t \to +\infty} \|x(t)\| \le \frac{k\|B\|}{\lambda} \|u\|_{\mathcal{L}_{\infty}}.$$

Voyons maintenant comment ces résultats s'étendent aux systèmes non-linéaires. Nous considérons le système

$$\dot{x} = f(x, u)$$
 avec l'équilibre (\bar{x}, \bar{u}) (9.6)

et nous supposons que la fonction f(x, u) est continûment dérivable dans un voisinage de l'équilibre.

Théorème 9.13. Stabilité (locale) EBEB

Si l'équilibre (\bar{x}, \bar{u}) du système (9.6) est asymptotiquement stable,

- (i) il existe trois constantes positives c_1 , c_2 et c_3 telles que, pour tout état initial x_0 avec $||x_0 \bar{x}|| < c_1$ et tout signal d'entrée u(t) avec $||u(t) \bar{u}|| < c_2$, la solution x(t) est bornée : $||x(t) x_0|| < c_3 \ \forall t \ge t_0$;
- (ii) il existe une constante positive c_0 et une fonction continue $\alpha : [0, a) \rightarrow [0, +\infty)$ passant par l'origine (c-à-d $\alpha(0) = 0$) et croissante¹ telle que, pour tout signal d'entrée u(t) avec $||u(t) \bar{u}|| < c_0 \quad \forall t \ge t_0$, la « borne ultime » de x(t) est une fonction croissante de la borne de u(t) :

$$\limsup_{t \to +\infty} \|x(t)\| \le \alpha(\|u\|_{\mathcal{L}_{\infty}}). \quad \Box$$

Dans le cas où le système (9.6) est défini globalement et possède un équilibre unique, on a aussi la propriété globale suivante.

Théorème 9.14. Stabilité (globale) EBEB

Si la fonction f(x, u) est globalement continûment dérivable et globalement Lipschitz en (x, u), si l'équilibre (\bar{x}, \bar{u}) est globalement exponentiellement stable, alors

^{1.} une telle fonction est dite de classe ${\cal K}$

- (i) pour tout état initial x_0 et tout signal d'entrée u(t), la solution x(t) est bornée;
- (ii) la « borne ultime » de x(t) est une fonction croissante de la borne de u(t).

Il faut remarquer que ce dernier théorème est assez restrictif. Il existe en effet de nombreux systèmes dynamiques pour lesquels la fonction f(x, u) n'est pas globalement Lipschitz et qui possèdent pourtant une propriété EBEB globale. Par contre, la condition de stabilité exponentielle de l'équilibre est cruciale. En effet, si l'équilibre est globalement asymptotiquement stable mais pas globalement exponentiellement stable, alors le système (9.6) n'est pas nécessairement EBEB stable, même si f(x, u) est globalement Lipschitz.

9.8. Exercices

Exercice 9.1. Un réacteur chimique

Dans un réacteur continu se déroulent deux réactions chimiques en phase liquide à volume constant faisant intervenir trois espèces chimiques X_1 , X_2 , X_3 . La dynamique du réacteur est décrite par le modèle d'état suivant (x_i désigne la concentration de X_i) :

$$\dot{x}_1 = -x_1^2 x_2 - dx_1 + du,$$

$$\dot{x}_2 = x_1^2 x_2 - (d+k)x_2,$$

$$\dot{x}_3 = 2kx_2 - dx_3.$$

- 1. De quelles réactions s'agit-il? (loi d'action des masses).
- 2. Dans l'orthant positif ($x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$) déterminer le ou les équilibres pour $\bar{u} > 0$. Indiquer combien il y a d'équilibres pour chaque valeur de \bar{u} et expliciter les conditions d'existence.
- 3. Analyser la stabilité des équilibres par la première méthode de Lyapunov.

Exercice 9.2. Circuit RLC

Soit le circuit RLC parallèle illustré ci-dessous :

La caractéristique courant-tension i = g(v) de la résistance non-linéaire est une fonction monotone croissante telle que représentée sur la figure suivante :

- 1. Etablir un modèle d'état du système.
- 2. Calculer les équilibres.
- 3. En utilisant l'énergie comme fonction de Lyapunov, analyser la stabilité globale des équilibres par la seconde méthode de Lyapunov.

Exercice 9.3. Réacteur chimique

Soit un réacteur chimique de type CSTR où se produit la réaction suivante :

$$X_1 + X_2 \longrightarrow 2X_2.$$

- 1. Etablir un modèle d'état sous les hypothèses de modélisation suivantes :
 - cinétique décrite par la loi d'action des masses
 - réacteur alimenté en X_1 uniquement ($x_{1,in} = \text{cste}$)
 - le débit volumique d'alimentation est l'entrée.
- 2. Montrer que ce système possède un équilibre dans l'orthant positif.
- 3. Montrer que $V = x_1 \bar{x}_1 \ln x_1 + x_2 \bar{x}_2 \ln x_2$ est une fonction de Lyapunov dans l'orthant positif.
- 4. Démontrer que l'équilibre est globalement asymptotiquement stable dans l'orthant positif.

Exercice 9.4. Système mécanique

On considère un système mécanique à un degré de liberté. La variable de position est x_1 . Ce système est soumis à une force dérivant d'un potentiel et à un frottement visqueux linéaire.

L'énergie potentielle est donnée par

$$E_p(x_1) = \int_0^{x_1} \frac{\sigma}{K + |\sigma|} d\sigma.$$

- 1. Etablir un modèle d'état du système.
- 2. Calculer les équilibres.
- 3. Analyser la stabilité des équilibres par la méthode directe de Lyapunov.

Exercice 9.5. Modélisation d'un neurone

Le modèle de Naka-Rushton décrivant la dynamique d'un neurone dans la mémoire à court terme est donné par les équations d'état suivantes :

$$\dot{x}_1 = -x_1 + \frac{ux_2}{1+x_2},$$

$$\dot{x}_2 = -x_2 + \frac{ux_1}{1+x_1}.$$

- 1. Montrer que le système est positif
- Analyser l'existence et la stabilité des équilibres dans l'orthant positif (première méthode de Lyapunov).
- 3. Pour *u* constant, $0 < \bar{u} < 1$, montrer que toutes les trajectoires dans l'orthant positif convergent vers l'origine à l'aide de la fonction de Lyapunov $V = (1/2)(x_1^2 + x_2^2)$.

Exercice 9.6. Soit le système dynamique :

$$\dot{x}_1 = -x_1 + x_2,$$

 $\dot{x}_2 = -x_1^3(1+u^2).$

Avec une fonction de Lyapunov de la forme

$$V = ax_1^{\alpha} + bx_2^{\beta}$$

où a, b, α, β sont des constantes positives à déterminer, montrer que, pour toute entrée constante $u(t) = \bar{u}$, ce système possède un équilibre unique et globalement asymptotiquement stable.

Exercice 9.7. Soit le systèmes dynamique :

$$\dot{x}_1 = -\phi(x_1) + \phi(x_2),$$

 $\dot{x}_2 = \phi(x_1) - 2\phi(x_2) + u.$

La fonction $\phi(x): \mathbb{R} \longrightarrow \mathbb{R}$ possède les propriétés suivantes :

- a) $\phi(x)$ est une bijection,
- b) $\phi(x)$ est C^{∞} ,
- c) $\phi(x)$ est strictement monotone croissante ($d\phi/dx > 0$, $\forall x \in I\!\!R$),
- d) $\phi(x)$ passe par l'origine ($\phi(0) = 0$).

1. Démontrer qu'il s'agit d'un système à compartiments.

2. Pour une entrée constante strictement positive ($\bar{u} > 0$), expliciter les conditions sous lesquelles le système possède un équilibre unique dans l'orthant positif.

3. Démontrer que cet équilibre, s'il existe, est globalement asymptotiquement stable à l'aide de la fonction de Lyapunov

$$V(x_1, x_2) = \int_{\bar{x}_1}^{x_1} (\phi(s) - \bar{u}) ds + \int_{\bar{x}_2}^{x_2} (\phi(s) - \bar{u}) ds.$$

Chapitre 10

Commandabilité et planification de trajectoires

D ans les trois chapitres précédents, nous avons étudié en détail le comportement des systèmes dynamiques *libres* dont les entrées sont *constantes* : $\dot{x} = f(x, \bar{u})$. Dans ce dernier chapitre, nous allons considérer des systèmes dynamiques *commandés* $\dot{x} = f(x, u)$ et nous intéresser en particulier à l'existence et la détermination de fonctions d'entrées u(t) pouvant varier au cours du temps et permettant de piloter le système dans l'espace d'état et d'en planifier les trajectoires.

10.1. Définitions

Dans la pratique, il arrive souvent que l'on désire conduire un système dynamique d'un état initial x_0 à un état final x_f . C'est ce qu'on appelle un *problème de planification de trajectoire*. Pour résoudre un tel problème, il faut qu'il existe au moins une fonction d'entrée u(t) produisant une trajectoire du système passant par les états x_0 et x_f .

Définition 10.1. Etats atteignables

Pour le système dynamique $\dot{x} = f(x, u)$, l'état final x_f est atteignable à partir de l'état initial x_0 s'il existe un temps fini T et une fonction d'entrée u(t): $[t_0, t_0 + T] \rightarrow \mathbb{R}^n$ tels que $x(t_0 + T, x_0, u) = x_f$.

Cette notion d'atteignabilité conduit au concept de commandabilité d'un système dynamique explicité dans la définition suivante.

Définition 10.2. Commandabilité

Le système $\dot{x} = f(x, u)$ est *localement commandable* en x_f s'il existe un voisinage de x_f tel que x_f soit atteignable à partir de chaque élément du voisinage.

Le système est globalement commandable si tout état $x_f \in \mathbb{R}^n$ est atteignable à partir de tout état initial $x_0 \in \mathbb{R}^n$.

L'objet de ce chapitre est d'étudier la commandabilité et la planification de trajectoires des systèmes dynamiques $\dot{x} = f(x, u)$. Comme nous le verrons, l'analyse de l'atteignabilité et de la commandabilité est totalement élucidée pour les systèmes linéaires alors qu'il reste de nombreuses questions ouvertes pour les systèmes non linéaires. D'autre part le problème de la planification des trajectoires est entièrement résolu pour les systèmes linéaires, alors qu'on n'en connait la solution que pour une classe restreinte de systèmes non linéaires que l'on appelle systèmes (différentiellement) plats et qui sont, en un certain sens, équivalents à des systèmes linéaires.

10.2. Commandabilité : systèmes linéaires

Pour vérifier si un système linéaire $\dot{x} = Ax + Bu$ est complètement commandable, on peut utiliser l'un des deux critères donnés par le théorème suivant.

Théorème 10.3. Commandabilité des systèmes linéaires

Le système linéaire $\dot{x} = Ax + Bu$ est complètement commandable si et seulement si l'un des deux critères équivalents suivants est satisfait :

- 1. (Critère de Kalman) La matrice $C = (B \ AB \ A^2B \dots A^{(n-1)}B)$ est ré-gulière (cette matrice est appelée *matrice de commandabilité*);
- 2. (Critère de Popov-Belevitch-Hautus) Le rang de la matrice $(sI A \ B)$ est égal à n pour tout $s \in \mathbb{C}$.

Si un système linéaire n'est pas complètement commandable, on peut définir une transformation d'état pour mettre la partie non commandable du vecteur d'état en évidence.

Supposons que la matrice de commandabilité soit de rang d < n. On définit une matrice $T = (T_a \ T_b)$ telle que T_a contienne d colonnes linéairement indépendantes de C et T_b complète la matrice par n - d vecteurs indépendants des colonnes de T_a . La matrice inverse T^{-1} peut dès lors s'écrire :

$$T^{-1} = \left(\begin{array}{c} U_a \\ U_b \end{array}\right)$$

où les sous matrices U_a et U_b sont choisies telles que :

$$T^{-1}T = \left(\begin{array}{cc} U_a T_a & U_a T_b \\ U_b T_a & U_b T_b \end{array}\right) = \left(\begin{array}{cc} I_d & 0 \\ 0 & I_{n-d} \end{array}\right)$$

On définit la transformation d'état :

$$z = \left(\begin{array}{c} z_a \\ z_b \end{array}\right) = \left(\begin{array}{c} U_a x \\ U_b x \end{array}\right)$$

Dans ces nouvelles variables d'état, on a le modèle d'état suivant :

$$\dot{z}_a = U_a A T_a z_a + U_a A T_b z_b + U_a B u \dot{z}_b = U_b A T_b z_b$$

En effet $U_bT_a = 0$ implique que $U_bB = 0$ et $U_bAT_a = 0$ car les colonnes de B et de AT_a sont des combinaisons linéaires des colonnes de T_a . On observe que la partie z_b du vecteur d'état n'est pas influencée par l'entrée u : elle représente la partie non commandable de l'état du système.

10.3. Commandabilité : systèmes non-linéaires

L'étude de la commandabilité des systèmes non-linéaires est beaucoup plus compliquée que celle des systèmes linéaires. Nous commençons cette étude par l'examen des conclusions que l'on peut tirer de la commandabilité du linéarisé d'un système non-linéaire au voisinage d'un équilibre.

Théorème 10.4. Commandabilité locale (1)

Considérons le linéarisé du système $\dot{x} = f(x, u)$ autour d'un équilibre (\bar{x}, \bar{u}) :

$$\dot{x} = Ax + Bu$$
 avec $A = (\frac{\partial f}{\partial x})_{(\bar{x},\bar{u})}$ et $B = (\frac{\partial f}{\partial u})_{(\bar{x},\bar{u})}$. (10.1)

Si le système linéaire (10.1) est commandable, alors, pour tout $\epsilon > 0$, l'ensemble des états x_f atteignables à partir de \bar{x} avec des entrées $u(t) : u(t) - \bar{u} < \epsilon$, contient un voisinage de \bar{x} .

Cette propriété locale de commandabilité des systèmes non-linéaires a une portée limitée. Comme nous allons le voir dans l'exemple suivant, il existe en effet des systèmes non-linéaires complètement commandables, dont le linéarisé n'est pas commandable au voisinage de l'équilibre!

Exemple 10.5. Une voiture automobile

Considérons une voiture automobile de type « traction avant » dont les roues avant sont à la fois motrices et directrices. Le modèle cinématique s'écrit :

$$\begin{aligned} \dot{\xi}_1 &= \sin \theta_1 \cos \theta_2 u_1 \\ \dot{\xi}_2 &= -\cos \theta_1 \cos \theta_2 u_2 \\ \dot{\theta}_1 &= \sin \theta_2 u_1 \\ \dot{\theta}_2 &= u_2 \end{aligned}$$

où (ξ_1, ξ_2) désignent les coordonnées cartésiennes du milieu de l'essieu arrière, θ_1 l'orientation du chassis, θ_2 l'orientation des roues avant, u_1 la vitesse de propulsion et u_2 la vitesse d'orientation des roues avant.

Ce système possède une infinité d'équilibres non isolés de la forme $(\bar{\xi}_1, \bar{\xi}_2, \bar{\theta}_1, \bar{\theta}_2, 0, 0)$. Les matrices (A, B) du linéarisé du système autour d'un quelconque de ces équilibres s'écrivent :

$$A = 0 \qquad B = \begin{pmatrix} \sin \theta_1 \cos \theta_2 & 0\\ -\cos \bar{\theta}_1 \cos \bar{\theta}_2 & 0\\ \sin \bar{\theta}_2 & 0\\ 0 & 1 \end{pmatrix}$$

On observe immédiatement que le système linéarisé n'est pas commandable (rang C = 2) alors que l'intuition physique indique à l'évidence qu'une voiture automobile est un système dynamique commandable qui, dans un environnement sans obstacle, peut être manoeuvré pour aller de n'importe quelle position initiale à n'importe quelle position finale.

Comme l'indique cet exemple, un système non-linéaire peut posséder des propriétés de commandabilité qui ne sont pas apparentes dans le linéarisé. L'analyse de ces propriétés est facilitée par l'usage de concepts et de notations de géométrie différentielle qui sont brièvement résumés en annexe. Nous en commençons l'étude par la présentation d'une procédure qui permet, lorsqu'un système n'est *pas* commandable, de mettre les variables d'état non-commandables en évidence.

Supposons que, pour un système $\dot{x} = f(x, u)$ donné, il existe une transformation d'état $z = \phi(x)$ telle que, dans les nouvelles variables d'état, le système s'écrive comme suit :

$$z = \begin{pmatrix} z_a \\ z_b \end{pmatrix} \qquad \begin{cases} \dot{z}_a = \tilde{f}_a(z_a, z_b, u) \\ \dot{z}_b = \tilde{f}_b(z_b) \end{cases}$$

Il est clair, dans ce cas, que la partie z_b du vecteur d'état n'est pas influencée par l'entrée u et que le système n'est donc pas commandable. En voici un exemple simple.

Exemple 10.6. Un réacteur chimique

Considérons un réacteur chimique isotherme et parfaitement mélangé dans lequel se déroule la réaction réversible :

$$2X_1 \longleftrightarrow X_2 + X_3$$

Le réacteur est alimenté par l'espèce X_1 avec un débit volumétrique constant et une concentration variable. Le modèle d'état s'écrit :

$$\dot{x}_1 = -2k_1x_1^2 + 2k_2x_2x_3 - dx_1 + du \dot{x}_2 = k_1x_1^2 - k_2x_2x_3 - dx_2 \dot{x}_3 = k_1x_1^2 - k_2x_2x_3 - dx_3$$

Soit la transformation d'état linéaire :

 $\begin{array}{ll} z_1 = x_1 & x_1 = z_1 \\ z_2 = x_2 & \longleftrightarrow & x_2 = z_2 \\ z_3 = x_2 - x_3 & x_3 = z_2 - z_3 \end{array}$

Dans les nouvelles variables d'état, le modèle se réécrit ;

$$\dot{z}_1 = -2k_1z_1^2 + 2k_2z_2(z_2 - z_3) - dz_1 + du \dot{z}_2 = k_1z_1^2 - k_2z_2(z_2 - z_3) - dz_2 \dot{z}_3 = -dz_3$$

Le système n'est donc pas commandable car les trajectoires de z_3 (qui est la différence entre les concentrations des espèces X_2 et X_3) ne peuvent être influencées par l'entrée u (qui est la concentration d'alimentation de l'espèce X_1).

Une condition suffisante d'existence d'une partie non-commandable de l'état est donnée dans le théorème suivant pour les systèmes affines en l'entrée :

$$\dot{x} = f(x) + \sum_{j=1}^{m} g_j(x) u_j$$
 (10.2)

Théorème 10.7. Si, dans un voisinage U d'un point x_0 , il existe une distribution $\Delta(x)$ régulière de dimension d telle que :

- 1. $\Delta(x)$ est involutive
- 2. $\Delta(x)$ contient span{ $g_1(x), g_2(x), \ldots, g_m(x)$ }
- 3. $\Delta(x)$ est invariante par rapport à f(x) et $g_1(x), g_2(x), \ldots, g_m(x)$,

alors il existe une transformation d'état $\phi : U \longrightarrow V = \phi(U)$ telle que, dans les nouvelles variables d'état $z = \phi(x)$, le système (10.2) se réécrit :

$$\dot{z}_a = \tilde{f}_a(z_a, z_b) + \sum_{j=1}^m \tilde{g}_j(z_a, z_b) u_j$$
$$\dot{z}_b = \tilde{f}_b(z_b)$$

avec dim $z_b = (n - d)$.

Le théorème suivant permet alors de déterminer la plus petite distribution $\Delta^*(x)$ qui vérifie les conditions ci-dessus et donc de déterminer la dimension maximum de la partie non-commandable.

Théorème 10.8. Dans un voisinage U de x_0 , on définit la séquence de distributions :

$$\begin{aligned} \Delta_0(x) &= & \mathsf{span}\{g_1(x), g_2(x), \dots, g_m(x)\} \\ \Delta_k(x) &= & \Delta_{k-1}(x) + [f(x), \Delta_{k-1}(x)] + \sum_{j=1}^m [g_j(x), \Delta_{k-1}(x)]. \end{aligned}$$

Alors $\Delta^*(x) = \Delta_{k^*}(x)$ avec k^* le plus petit entier tel que $\Delta_{k^*}(x)$ est régulière sur U et invariante par rapport à f(x) et $g_1(x), g_2(x), \ldots, g_m(x)$. Si toutes les distributions $\Delta_k(x), 0 \le k \le k^*$ sont régulières sur U, alors $k^* \le n$.

La dimension de Δ^* porte le nom de rang d'atteignabilité du système au voisinage de x_0 . L'énoncé du théorème 10.8 contient implicitement une procédure pour la détermination du rang d'atteignabilité qui consiste à générer successivement les distributions $\Delta_k(x)$. La procédure s'arrête dès qu'on en trouve une qui est régulière et invariante par rapport à f et aux g_i . Il n'est pas nécessaire de vérifier que cette distribution est involutive. Il est intéressant aussi de constater que, dans le cas d'un système linéaire $\dot{x} = Ax + Bu$, on a :

$$\Delta_k = \text{ span } \{ B \ AB \dots A^{k-1}B \}$$

et donc que le rang d'atteignabilité coïncide avec le rang de la matrice de commandabilité \mathcal{C} .

Un système dont le rang d'atteignabilité est maximum (c'est-à-dire égal à n) au voisinage de x_0 possède alors une propriété de commandabilité locale semblable à celle du théorème 10.4, même si x_0 n'est pas un état d'équilibre et même si le linéarisé du système n'est pas commandable.

Théorème 10.9. Commandabilité locale (2)

Pour le système (10.2), il existe un voisinage de x_0 dont tous les états sont atteignables à partir de x_0 si et seulement si le rang d'atteignabilité du système au voisinage de x_0 est égal à n.

Enfin on a la propriété de commandabilité complète pour une sous-classe de systèmes.

Théorème 10.10. Commandabilité complète

Si $f(x) \in \text{span}\{g_1(x), g_2(x), \dots, g_m(x)\}$ pour tout $x \in \mathbb{R}^n$ (ceci est vrai en particulier si f(x) = 0) et si le rang d'atteignabilité vaut n au voisinage de tout $x \in \mathbb{R}^n$, alors le système (10.2) est complètement commandable.

Ces deux théorèmes sont illustrés dans l'exemple suivant.

Exemple 10.11. Une voiture automobile

Considérons à nouveau le modèle de la voiture automobile de l'exemple 10.5 qui s'écrit :

$$\dot{x} = g_1(x)u_1 + g_2(x)u_2$$

avec :

$$g_1(x) = \begin{pmatrix} \sin \theta_1 \cos \theta_2 \\ -\cos \theta_1 \cos \theta_2 \\ \sin \theta_2 \\ 0 \end{pmatrix} \qquad g_2(x) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

On calcule les crochets de Lie :

$$g_3(x) = [g_1(x), g_2(x)] = \begin{pmatrix} -\sin\theta_1 \sin\theta_2 \\ \cos\theta_1 \sin\theta_2 \\ \cos\theta_2 \\ 0 \end{pmatrix}$$
$$g_4(x) = [g_3(x), g_1(x)] = \begin{pmatrix} \cos\theta_1 \\ \sin\theta_1 \\ 0 \\ 0 \end{pmatrix}$$

On vérifie que f(x) = 0 et que la matrice $[g_1(x), g_2(x), g_3(x), g_4(x)]$ est régulière pour tout x dans \mathbb{R}^4 . Ces deux conditions suffisent pour que les hypothèses des deux théorèmes précédents soient vérifiées. La voiture automobile est donc bien complètement commandable même si son modèle linéarisé ne l'est pas.

Les résultats présentés dans cette section peuvent paraître restrictifs car ils ne s'appliquent qu'à des systèmes affines en l'entrée. Leur portée est cependant plus générale car un système quelconque $\dot{x} = f(x, u)$ peut toujours être augmenté par une *extension dynamique* pour le rendre affine en l'entrée. Il suffit en effet de considérer u comme un ensemble additionnel de variables d'état et de définir un nouveau vecteur v de variables d'entrée telles que :

$$\dot{x} = f(x, u)$$

 $\dot{u} = v$

Avec le vecteur d'état augmenté $\xi^T = (x^T, u^T)$, le système s'écrit :

$$\dot{\xi} = \varphi(\xi) + \sum_{j=1}^{m} g_j v_j = \varphi(\xi) + Gv$$

$$(10.3)$$

$$o\dot{u}: \quad \varphi(\xi) = \begin{pmatrix} f(x, u) \\ 0 \end{pmatrix} \qquad G = \begin{pmatrix} 0 \\ I_m \end{pmatrix}$$

La commandabilité du système augmenté (10.3), que l'on peut vérifier avec les théorèmes précédents, est évidemment suffisante pour garantir la commandabilité du système original.

10.4. Planification de trajectoires

Dans les sections précédentes, nous avons étudié les conditions et les critères qui permettent de savoir si un système est commandable. Il est évidemment encore plus intéressant de pouvoir déterminer la fonction d'entrée u(t) qui permet effectivement de conduire le système d'un état initial x_0 à un état final x_f en un temps raisonnable. C'est le problème de la *planification de trajectoire* que nous allons traiter maintenant.

10.4.1. Systèmes mono-entrée sous forme de Brunovski

Nous considérons ici les systèmes affines en l'entrée $\dot{x} = f(x) + g(x)u, u \in \mathbb{R}$ qui peuvent se mettre sous forme de Brunovski et qui sont caractérisés par le théorème suivant.

Théorème 10.12. Un système $\dot{x} = f(x) + g(x)u$ peut être mis sous forme de Brunovski dans un domaine $U \subset \mathbb{R}^n$ si et seulement si :

- 1) La matrice $\mathcal{D} = [g(x) \ ad_f g(x) \ ad_f^2 g(x) \dots ad_f^{n-1} g(x)]$ est régulière $\forall x \in U$;
- 2) La distribution $\Delta(x) = \text{span} \{g(x) \dots ad_f^{n-2}g(x)\}$ est involutive sur U.

Si ces conditions sont satisfaites, il existe une transformation d'état $z = \varphi(x)$, $z : U \longrightarrow V$ telle que le système se réécrive sous la forme triangulaire (dite de Brunovski) :

$$\begin{aligned} \dot{z}_1 &= z_2 \\ \dot{z}_2 &= z_3 \\ \vdots \\ \dot{z}_n &= \alpha(z) + \beta(z)u \qquad \beta(z) \neq 0 \ \forall z \in V \end{aligned} \tag{10.4}$$

On déduit immédiatement de ce théorème qu'un système linéaire mono-entrée $\dot{x} = Ax + bu$ peut être mis sous forme de Brunovski si et seulement si il est complètement commandable. En effet, dans ce cas, la matrice \mathcal{D} est la matrice de commandabilité du système :

$$\mathcal{D} = \mathcal{C} = [b \ Ab \ A^2b \dots A^{(n-1)}b]$$

et la distribution Δ est nécessairement involutive puisqu'elle ne contient que des vecteurs constants. Il existe alors une transformation *linéaire* d'état :

$$z = Tx$$

telle que le système se réécrit sous forme de Brunovski :

$$\dot{z}_i = z_{i+1}$$
 $i = 1, \dots, n$
 $\dot{z}_n = -\sum_{i=1}^n \alpha_i z_i + \beta u$

La matrice T est définie comme suit :

$$T = \begin{pmatrix} h^T \\ h^T A \\ \vdots \\ h^T A^{n-1} \end{pmatrix}$$

où le vecteur h est la dernière colonne de la transposée de l'inverse de la matrice de commandabilité C^{-T} .

Une fois que le système, qu'il soit linéaire ou non-linéaire, est sous forme de Brunovski, le problème de planification de trajectoire devient très facile à résoudre. Nous commençons par en montrer la solution pour le cas particulier d'un système quelconque de dimension deux.

Exemple 10.13. Un système de dimension 2

Soit le système :

$$\dot{x}_1 = f_1(x_1, x_2) + g_1(x_1, x_2)u \dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)u$$

Le problème est de trouver une fonction d'entrée u(t) qui conduise ce système d'un état initial $(x_1(0), x_2(0))$ à un état final $(x_1(T), x_2(T))$.

On suppose qu'il existe une transformation d'état :

$$z_1 = \phi_1(x_1, x_2) z_2 = \phi_2(x_1, x_2)$$

qui met le système sous forme de Brunovski :

$$\dot{z}_1 = z_2$$
 (10.5)

$$\dot{z}_2 = \alpha(z_1, z_2) + \beta(z_1, z_2)u$$
 (10.6)

Le problème est maintenant de trouver une fonction u(t) qui conduise le système (10.5)-(10.6) de l'état initial $z_1(0) = \phi_1(x_1(0), x_2(0)), z_2(0) = \phi_2(x_1(0), x_2(0))$ à

l'état final $z_1(T) = \phi_1(x_1(T), x_2(T))$, $z_2(T) = \phi_2(x_1(T), x_2(T))$. Pour la variable d'état $z_1(t)$, on définit une trajectoire polynomiale de la forme :

$$z_1(t) = \lambda_3(\frac{t}{T})^3 + \lambda_2(\frac{t}{T})^2 + \lambda_1(\frac{t}{T}) + \lambda_0$$

où les coefficients λ_i sont pour le moment inconnus. On déduit de la forme de Brunovski que la trajectoire de $z_2(t)$ doit être de la forme :

$$z_2(t) = \dot{z}_1(t) = \frac{3}{T}\lambda_3(\frac{t}{T})^2 + \frac{2}{T}\lambda_2(\frac{t}{T}) + \frac{1}{T}\lambda_1$$

En explicitant les expressions de $z_1(t)$ et $z_2(t)$ aux instants t = 0 et t = T, on observe alors que les coefficients λ_i sont solution du système d'équations linéaires :

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{T} & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & \frac{1}{T} & \frac{2}{T} & \frac{3}{T} \end{pmatrix} \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} z_1(0) \\ z_2(0) \\ z_1(T) \\ z_2(T) \end{pmatrix}$$
(10.7)

Les λ_i étant ainsi déterminés, on connait maintenant une trajectoire $z_1(t), z_2(t)$ qui relie les états initial et final désirés et on peut calculer l'entrée u(t) correspondante :

$$u(t) = \frac{\dot{z}_2(t) - \alpha(z_1(t), z_2(t))}{\beta(z_1(t), z_2(t))}$$

avec

$$\dot{z}_2(t) = \frac{6}{T^2}\lambda_3(\frac{t}{T}) + \frac{2}{T^2}\lambda_2$$

Le problème de la planification de trajectoire est ainsi résolu.

Le cas particulier d'un système de dimension 2 que nous venons d'étudier se généralise facilement en dimension n. Rappelons qu'on suppose que le système est sous forme de Brunovski :

$$\begin{aligned} \dot{z}_1 &= z_2 \\ \dot{z}_2 &= z_3 \\ &\vdots \\ \dot{z}_n &= \alpha(z) + \beta(z)u \qquad \beta(z) \neq 0 \end{aligned}$$

Il suffit de définir, pour $z_1(t)$, une trajectoire polynomiale de la forme :

$$z_1(t) = \sum_{i=0}^{2n-1} \lambda_i(\frac{t}{T})^i$$

En calculant les dérivées successives de $z_1(t)$, on obtient les expressions de $z_j(t)$, j = 2, ..., n:

$$z_j(t) = \sum_{i=j-1}^{2n-1} \frac{i!}{(i-j+1)!} \frac{\lambda_i}{T^{j-1}} (\frac{t}{T})^{-j+1}$$

En explicitant ensuite ces expressions aux instants t = 0 et t = T, on obtient un système d'équations linéaires qui généralise le système (10.7) et permet de calculer les λ_i . Il ne reste plus alors qu'à calculer l'entrée u(t):

$$u(t) = \frac{\dot{z}_n(t) - \alpha(z(t))}{\beta(z(t))}$$

Remarque 10.14. Nous avons présenté ci-dessus une solution du problème de planification basée sur l'utilisation de fonctions polynomiales d'ordre 2n - 1 pour générer les trajectoires du système. Le choix de telles fonctions polynomiales n'a cependant rien d'impératif. D'une manière plus générale, comme on peut le déduire aisément des développements précédents, on peut utiliser des combinaisons linéaires de 2n - 1 fonctions linéairement indépendantes quelconques.

10.4.2. Systèmes linéaires multi-entrées

Nous considérons maintenant des systèmes linéaires multi-entrées de la forme suivante :

$$\dot{x} = Ax + Bu \qquad x \in \mathbb{R}^n \qquad u \in \mathbb{R}^m$$

On suppose que rang(B) = m et que le système est commandable. On définit les *indices de commandabilité* $\delta_1, \delta_2, \ldots, \delta_m$:

$$\delta_i = \operatorname{card}[m_j \ge i : j \ge 0]$$

avec

Par définition, on a :

$$\delta_1 \ge \delta_2 \ge \dots \ge \delta_m \quad \text{et} \quad \sum_{j=1}^m \delta_j = n$$

Il existe alors une transformation d'état z = Tx qui permet de mettre le système sous une forme de Brunovski généralisée constituée de m blocs ayant chacun la forme triangulaire suivante :

$$\begin{aligned}
\dot{z}_{j1} &= z_{j2} \\
\dot{z}_{j2} &= z_{j3} \\
\vdots \\
\dot{z}_{j\delta_{j-1}} &= z_{j\delta_{j}} \\
\dot{z}_{j\delta_{j}} &= \sum_{\substack{j=1,m\\i=1,\delta_{j}}} \alpha_{ji} z_{ji} + \sum_{k=1,m} \beta_{jk} u_{k}
\end{aligned}$$
(10.8)

Le vecteur d'état z est formé des n variables z_{ji} , $j = 1 \dots m$, $i = 1 \dots \delta_j$. La matrice $G = [\beta_{jk}]$ est carrée et inversible. Cette forme de Brunovski multi-entrées peut alors être utilisée, comme dans le cas mono-entrée, pour résoudre des problèmes de planification de trajectoire.

10.4.3. Sorties de Brunovski

En introduisant la notation $y_j = z_{j1}$, le modèle d'état (10.8) peut aussi être écrit sous la forme plus compacte

$$\dot{y}_{j}^{(\delta_{j}+1)} = \sum_{\substack{j=1,m\\i=1,\delta_{j}}} \alpha_{ji} y_{j}^{(i)} + \sum_{k=1,m} \beta_{jk} u_{k} \qquad j = 1,\dots,m$$

c'est-à-dire sous la forme de m équations différentielles linéaires d'ordre $(\delta_j + 1)$. Les variables y_j sont des combinaisons linéaires de l'état x et sont appelées sorties de Brunovski. On remarque que le nombre de sorties de Brunovski est égal au nombre d'entrées du système.

10.4.4. Systèmes non-linéaires multi-entrées

Considérons maintenant un système non-linéaire multi-entrées, affine en l'entrée :

$$\dot{x} = f(x) + \sum_{j=1}^{m} g_j(x) u_j.$$

Pour ce système, on peut étendre la notion de forme de Brunovski multi-entrées si il existe une transformation d'état non-linéaire z = T(x) qui permette de mettre

le système sous la forme bloc-triangulaire

$$\begin{aligned} \dot{z}_{j1} &= z_{j2} \\ \dot{z}_{j2} &= z_{j3} \\ \vdots & j = 1, \dots, m \\ \dot{z}_{j\delta_{j-1}} &= z_{j\delta_j} \\ \dot{z}_{j\delta_j} &= \alpha_j(z) + \sum_{k=1,m} \beta_{jk}(z) u_k \end{aligned}$$

où le vecteur d'état z est formé de n variables z_{ji} , $j = 1 \dots m$, $i = 1 \dots \delta_j$ et la matrice carrée $G(z) = [\beta_{jk}(z)]$ est inversible. Dans ce cas, les sorties de Brunovski sont des fonctions non-linéaires de l'état ($y_j = z_{1j} = h_j(x)$) et le modèle peut s'écrire sous la forme d'un système d'équations différentielles nonlinéaires

$$\dot{y}_{j}^{(\delta_{j}+1)} = \alpha_{j}(z) + \sum_{k=1,m} \beta_{jk}(z)u_{k} \qquad j = 1, \dots, m$$
 (10.9)

où le vecteur z est maintenant défini comme suit :

$$z = (y_1, \dot{y}_1, \dots, y_1^{(\delta_1)}, \dots, y_m, \dot{y}_m, \dots, y_m^{(\delta_m)}).$$

Contrairement au cas linéaire, les systèmes non-linéaires commandables ne peuvent pas toujours être mis sous une telle forme de Brunovski multi-entrées. Il sort du cadre de ce texte de discuter des conditions sous lesquelles la transformation est possible. C'est d'ailleurs une question qui n'est pas complètement clarifiée et qui fait encore l'objet de recherches actives à l'heure actuelle. Nous nous limiterons à présenter les deux exemples ci-dessous. Le premier est un exemple simple où le système est naturellement sous la forme de Brunovski multi-entrées (10.9). Le deuxième exemple est plus complexe. Il montrera un système commandable pour lequel il faut, par une *extension dynamique*, utiliser une forme de Brunovski augmentée dont la dimension est supérieure à la dimension du système lui-même.

Exemple 10.15. Un robot manipulateur

Considérons à nouveau le modèle du robot manipulateur à deux degrés de liberté que nous avons étudié au chapitre 2 (Exemple 2.2). En examinant le modèle, on observe facilement qu'il est d'emblée donné sous une forme de Brunovski multientrées avec les deux coordonnées de position $y_1 = x_1$ et $y_2 = \theta_2$ comme sorties de Brunovski. Pour éviter d'inverser explicitement la matrice d'inertie, on peut écrire le modèle comme suit sous forme matricielle :

$$\begin{pmatrix} \ddot{y}_1 \\ \ddot{y}_2 \end{pmatrix} = \begin{pmatrix} m_1 + m_2 & m_2 b \cos y_2 \\ m_2 b \cos y_2 & I_2 + m_2 b^2 \end{pmatrix}^{-1} \begin{pmatrix} m_2 b \dot{y}_2^2 \sin y_2 + u_1 \\ -m_2 b g_o \sin y_2 + u_2 \end{pmatrix}.$$

Les indices de commandabilité sont ici $\delta_1 = \delta_2 = 2$. La matrice G(z) est l'inverse de la matrice d'inertie.

Exemple 10.16. Dynamique d'une fusée

Au chapitre 2 (Exemple 2.1), nous avons établi le modèle de la dynamique d'une fusée comme suit :

- Equations de translation

$$\begin{aligned} m\ddot{x} &= (F_1 + F_2)\cos\theta \\ m\ddot{y} &= (F_1 + F_2)\sin\theta - mg_0 \end{aligned}$$

- Equation de rotation

$$I\ddot{\theta} = (F_2 - F_1)d\sin\alpha$$

Dans ces équations, (x, y) est la position du centre de masse de la fusée, θ l'angle de la fusée par rapport à l'horizontale, F_1 et F_2 les poussées des réacteurs, m la masse de la fusée, I son moment d'inertie, d et α des paramètres géométriques et g_0 l'accélération de la gravité. Pour simplifier l'écriture sans perte de généralité, nous définissons les entrées

$$u_1 = \frac{F_1 + F_2}{m}, \qquad u_2 = \frac{(F_2 - F_1)d\sin\alpha}{I}.$$

Avec ces notations, le modèle d'état s'écrit simplement :

$$\begin{aligned} \ddot{x} &= u_1 \cos \theta \\ \ddot{y} &= u_1 \sin \theta - g_0 \\ \ddot{\theta} &= u_2 \end{aligned}$$

Ce système est complètement commandable en vertu du Théorème 10.10. Intuitivement, on peut penser que les coordonnées x et y sont les sorties de Brunovski. Nous allons voir que cette intuition est justifiée, mais qu'elle implique une définition étendue de la notion de forme de Brunovski.

Calculons les dérivées troisièmes des coordonnées x et y :

$$\ddot{x} = \dot{u}_1 \cos \theta - u_1 \dot{\theta} \sin \theta$$
$$\ddot{y} = \dot{u}_1 \sin \theta + u_1 \dot{\theta} \cos \theta$$

Il est clair que ces expressions ne peuvent pas être utilisées pour bâtir une forme de Brunovski du type (10.9) car elles ne contiennent pas l'entrée u_2 . Par contre si on considère l'entrée u_1 comme une variable d'état supplémentaire et qu'on ajoute deux intégrateurs à l'entrée du système, alors on peut montrer que le système étendu possède une forme de Brunovski multi-entrées avec les coordonnées $y_1 = x$ et $y_2 = y$ comme sorties de Brunovski. Le système étendu s'écrit donc comme suit :

$$\begin{aligned} \ddot{x} &= u_1 \cos \theta \\ \ddot{y} &= u_1 \sin \theta \\ \ddot{\theta} &= u_2 \\ \ddot{u}_1 &= w_1 \end{aligned} \tag{10.10}$$

C'est un système qui est maintenant de dimension 8 (alors que le système de départ était de dimension 6) avec deux entrées w_1 et u_2 . Calculons les dérivées 4-ièmes des sorties de Brunovski x et y:

$$\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{y} \end{pmatrix} = \begin{pmatrix} -2\dot{u}_{1}\dot{\theta}\sin\theta - u_{1}\dot{\theta}^{2}\cos\theta \\ 2\dot{u}_{1}\dot{\theta}\cos\theta + u_{1}\dot{\theta}^{2}\sin\theta \end{pmatrix} + \begin{pmatrix} \cos\theta & -u_{1}\sin\theta \\ \sin\theta & u_{1}\cos\theta \end{pmatrix} \begin{pmatrix} w_{1} \\ u_{2} \end{pmatrix}.$$
 (10.11)

Il est maintenant clair que ce système peut être écrit sous une forme de Brunovski multi-entrées de la forme :

$$\left(\begin{array}{c} \overset{\underset{}{y_1}}{\underset{}{y_2}} \end{array}\right) = \alpha(z) + G(z) \left(\begin{array}{c} w_1\\ u_2 \end{array}\right).$$

En effet, à partir du modèle d'état (10.10), les différents termes qui apparaissent dans l'équation (10.11) peuvent être exprimés (après un peu de calcul !) en fonction des sorties de Brunovski $y_1 = x$ et $y_2 = y$ et de leurs dérivées, comme suit :

$$u_1 \cos \theta = \ddot{y}_1, \qquad u_1 \sin \theta = \ddot{y}_2 + g_o,$$

$$\sin \theta = \frac{\ddot{y}_2 + g_o}{\sqrt{\ddot{y}_1^2 + (\ddot{y}_2 + g_o)^2}}, \qquad \cos \theta = \frac{\ddot{y}_1}{\sqrt{\ddot{y}_1^2 + (\ddot{y}_2 + g_o)^2}},$$
$$\dot{\theta} = \frac{\ddot{y}_1 \ \ddot{y}_2 - (\ddot{y}_2 + g_o) \ \ddot{y}_1}{\ddot{y}_1^2 + (\ddot{y}_2 + g_o)^2},$$

$$\dot{u}_1 \cos \theta = \ddot{y}_1 + \dot{\theta}(\ddot{y}_2 + g_o), \qquad \dot{u}_1 \sin \theta = \ddot{y}_2 - \dot{\theta}\ddot{y}_1.$$

D'autre part, la matrice

$$G(z) = \begin{pmatrix} \cos\theta & -u_1\sin\theta\\ \sin\theta & u_1\cos\theta \end{pmatrix}$$

est régulière pour tout θ et pour tout $u_1 \neq 0$ (c-à-d tant que la poussée totale $F_1 + F_2$ des moteurs de la fusée n'est pas nulle).

Les systèmes non-linéaires qui peuvent être mis sous une forme de Brunovski multi-entrées, moyennant éventuellement une extension dynamique, sont appelés dans la littérature, *systèmes (différentiellement) plats* parce qu'ils sont, en un certain sens, équivalents à des systèmes linéaires comme le montre la méthode de calcul de la planification des trajectoires. Pour cette raison, les sorties de Brunovski sont parfois aussi appelées *sorties plates*.

10.5. Annexe : formules de géométrie différentielle

1. Champ de vecteur

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

2. Crochet de Lie

$$[f(x), g(x)] = \frac{\partial g(x)}{\partial x} f(x) - \frac{\partial f(x)}{\partial x} g(x)$$
$$[f(x), g(x)] = -[g(x), f(x)]$$

3. Notation itérative

$$ad_{f}g = [f,g]$$

$$ad_{f}^{2}g = [f,ad_{f}g] = [f,[f,g]]$$

$$\vdots$$

$$ad_{f}^{k}g = [f,ad_{f}^{k-1}g]$$

4. Distribution = ensemble d'espaces vectoriels

$$\Delta(x) = \{f_1(x), f_2(x), \dots, f_d(x)\}$$

- 5. Distribution Δ involutive si $[f_1, f_2] \in \Delta \ \forall \ f_1 \in \Delta \ , \ f_2 \in \Delta$
- 6. Distribution Δ *invariante* par rapport à g si

$$\forall \ f \in \Delta \ \Rightarrow \ [g, f] \in \Delta$$

10.6. Exercices

Exercice 10.1. Une montgolfière¹

On considère le modèle suivant pour une montgolfière :

$$\begin{split} \dot{\theta} &= -\frac{1}{\tau_1}\theta + u \\ \dot{v} &= -\frac{1}{\tau_2}v + \sigma\theta \\ \dot{h} &= v \end{split}$$

où θ est l'écart de température de l'air par rapport à la température d'équilibre, u est la commande (proportionnelle à la quantité d'énergie utilisée pour chauffer l'air du ballon),

 \boldsymbol{v} est la vitesse verticale (vitesse ascensionnelle), \boldsymbol{h} est la hauteur.

- 1. Commenter les équations.
- 2. Le système est-il commandable?

3. Planifier une trajectoire de
$$\begin{pmatrix} 0\\0\\h_0 \end{pmatrix}$$
 à $\begin{pmatrix} 0\\0\\h_1 \end{pmatrix}$ en $T = 1$.

^{1.} Problème extrait de "Analyse et commande de systèmes dynamiques" par F. Bonnans et P. Rouchon, Manuel de l' Ecole Polytechnique (France), édition de 2003.

Exercice 10.2. Un réacteur biochimique

Soit un réacteur à volume constant (unitaire) alimenté en réactif A (débit d, concentration x_A^{in}) dans lequel se déroule la réaction

$$A + B \rightarrow 2B + C$$

La cinétique de la réaction est donnée par la loi d'action des masses.

- 1. Donner une représentation d'état du système réactionnel.
- 2. Trouver, si c'est possible, un difféomorphisme mettant en évidence les modes non commandables du système. Examiner les 2 cas suivants :
 - La commande est d
 - La commande est x_A^{in}

Exercice 10.3. Contrôle d'attitude d'un satellite

Le contrôle de l'orientation d'un satellite (appelé contrôle d'attitude) peut avoir divers objectifs : pointer une antenne, un appareil de mesure ou un panneau solaire dans la bonne direction, éviter la déterioration par les rayons solaires d'éléments sensibles, orienter le satellite en vue de manoeuvres orbitales etc...

On considère un satellite dans l'espace dont les équations du mouvement s'écrivent :

$$\dot{x}_1 = a_1 x_2 x_3 + b_1 u_1 \dot{x}_2 = a_2 x_1 x_3 + b_2 u_2 \dot{x}_3 = a_3 x_1 x_2$$

Etudier la commandabilité locale (Théorème 10.9) de ce système ($a_i \neq 0 \ b_i \neq 0$).

Exercice 10.4. Un plongeur²

On considère le modèle ci-dessous décrivant la dynamique verticale d'un plongeur équipé d'un gilet stabilisateur contenant une quantité réglable d'air, notée q (exprimée en moles) :

$$M\frac{d^{2}h}{dt^{2}} = Mg - \rho g \left(V_{0} + \frac{qRT}{P_{0} + \rho h}\right)$$
$$\frac{dq}{dt} = u$$

avec les notations suivantes :

7		r 1			/				C C
ł	<u>.</u> .	nrotonde	mr du	nlongeur	maguraa	nositivement	dening	12	SUITACA
1	ι.	protonuc	uiuu	piongcui	mesuree	positiventent	ucpuis	ıa.	Surrace

M	:	masse du plongeur)
P_0	:	pression atmosphérique	-
T	:	température	Constantos
R	:	constante de Boltzmann	Constantes
ho	:	masse spécifique de l'eau	
V_0	:	volume du plongeur	J

La première équation est un bilan de force selon l'axe vertical. Ce bilan comprend la poussée d'Archimède $pg(V_0 + V_g)$ où V_g est le volume du gilet obtenu en fonction de la pression $p = P_0 + \rho h$ par la loi des gaz parfaits PV = qRT.

La deuxième équation représente le remplissage du gilet par l'air des bouteilles (u > 0) ou la purge du gilet (u > 0).

- 1. Montrer que le système peut être mis sous forme de Brunovski.
- 2. Montrer que le système est commandable.
- 3. On désire remonter de façon contrôlée entre deux paliers stabilisés. Le palier de départ (t = 0) est à la profondeur \bar{h}_1 . Le palier d'arrivée $(t = t_f)$ est à la profondeur \bar{h}_2 . Indiquer comment calculer l'entrée u(t) qui assure la transition entre ces ceux équilibres.

Exercice 10.5. Un robot sauteur

On considère un « robot sauteur » schématisé comme ci-dessous. Ce robot est formé d'un corps de masse M muni d'une jambe de masse m.

La jambe est articulée et on peut en contrôler l'orientation φ et l'extension z. La conservation du moment angulaire autour du centre de masse instantané s'écrit (d= constante) :

$$M\dot{\theta} + m(z+d)^2(\dot{\theta} + \dot{\varphi}) = 0$$

^{2.} Problème extrait de "Analyse et commande de systèmes dynamiques" par F. Bonnans et P. Rouchon, Manuel de l' Ecole Polytechnique (France), édition de 2003.

Les deux entrées de commande du système sont les vitesses d'orientation et d'élongation de la jambe.

$$u_1 = \dot{\varphi} \quad (2) \qquad \quad u_2 = \dot{z} \quad (3)$$

- 1. Ecrire les 3 équations (1) à (3) sous la forme d'un modèle d'état dont les entrées sont u_1 et u_2 .
- 2. Examiner si le système décrit par ce modèle est complètement commandable.