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Abstract-This paper discusses different aspects of bifurcations of periodic solutions in discon- 
tinuous systems. It is explained how jumps in the fundamental solution matrix lead to jumps of the 
Floquet multipliers of periodic solutions. A Floquet multiplier of a discontinuous system can jump 
through the unit circle causing a discontinuous bifurcation. Numerical examples show discontinu- 
ous fold and symmetry-breaking bifurcations. The discontinuous fold bifurcation can connect stable 
branches to branches with infinitely unstable periodic solutions. @ 2002 Elsevier Science Ltd. All 

rights reserved. 
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1. INTRODUCTION 

The aim of this paper is to explain how discontinuous bifurcations of periodic solutions arise in 

systems with a discontinuous vector field. 

During the last decade many textbooks about bifurcation theory for smooth systems appeared 

and bifurcations of periodic solutions in smooth systems are well understood [l-4]. However, 

little is known about bifurcations of periodic solutions in discontinuous systems. Discontinuous 

dynamical systems arise due to physical discontinuities such as dry friction, impact, and backlash 

in mechanical systems or diode elements in electrical circuits. Many publications deal with 

discontinuous systems [5-211. Most of the published bifurcation diagrams were constructed from 

data obtained by brute force techniques and only show stable branches, whereas those made 

by path-following techniques do show bifurcations to unstable solutions, but the bifurcations 

behave smoothly and are not discontinuous. Recently, Yoshitake and Sueoka [22] and Yoshitake 

et al. [23] studied different discontinuous systems and presented bifurcation diagrams which show 

discontinuous bifurcations. The Floquet multipliers expose jumps at the discontinuous bifurcation 

points [22]. 

Andronov et al. [24] treat periodic solutions of discontinuous systems. They revealed many 

aspects of discontinuous systems but did not treat discontinuous bifurcations with regard to 

Floquet theory. 
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Before proceeding we should clarify what we mean with the term ‘discontinuous system’. 

Discontinuous systems can be divided into three types according to their degree of discontinuity. 

(1) 

(2) 

(3) 

Systems with a discontinuous Jacobian, like systems with purely elastic supports. Those 

systems have a continuous vector field, but the vector field is nonsmooth. 

Systems described by differential equations with a discontinuous right-hand side (also 

called Filippov systems /25,26]). The vector field is discontinuous of those systems. Ex- 

amples are systems with viscoelastic supports and dry friction. 

Systems which expose discontinuities in the state, like impacting systems with velocity 

reversals. This type of system is not treated in this paper (see [27]). 

The theory of bifurcations in smooth dynamical systems is well developed. This is not the case 

for bifurcations in discontinuous dynamical systems. In this paper, we will study bifurcations of 

periodic solutions in systems with a discontinuous right-hod side (Filippov systems). 

The objective of the paper is to demonstrate different aspects of d~scon~~n~~~s ~~~Tcu~~~n, 

which is a novel, nonclassical type of bifurcation. The basic idea is that Floquet multipliers of 

discontinuous systems can jump when a parameter of the system is varied. If a Floquet multiplier 

jumps through the unit circle (Figure l), a discontinuous bifurcation is encountered. The idea of 

a discontinuous bifurcation of a periodic solution, at which a Floquet multiplier jumps through 

the unit circle, is similar to the ‘C-bifurcations’ in the work of Feigin [28-303 and diBernardo 

et al. [31-333. Feigin classifies C-bifurcations on the number of real-valued eigenvalues of the 

Poincare map that are smaller than -1 or larger than +l, but does not take complex eigenvalues 

into account. Nonclassical bifurcations of nonsmooth mappings were also addressed by Nusse 

and York [34]. In this paper, it is explained how the discontinuous bifurcations come into being 

through jumps of the fundamental solution matrix. It is shown that the fundamental solution 

matrix can jump if a periodic solution touches a nonsmooth hypersurface of discontinuity. 

Although there exist different definitions for a bifurcation, we will take the definition of Sey- 

de1 141 that at a bifurcation point, the number of fixed points or (qu~i-)periodic solutions changes 

for a varying system parameter. Bifurcations which expose a jump of the Floquet multipliers are 

called discontinuous bifurcations. 

_I_ 

Figure 1. Discontinuous bifurcation. 
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Three examples of discontinuous bifurcations of periodic solutions are discussed in the next 

sections, and it is explained how discontinuous bifurcations come into being through Floquet 

theory. The first example is a trilinear spring system which shows a discontinuous fold bifurcation 

connecting a stable branch to an unstable branch. A stick-slip system is treated in the second 

example. The discontinuous fold bifurcation connects a stable branch to an infinitely unstable 

branch. The discontinuous symmetry-breaking bifurcation will be discussed in Section 4. The 

results obtained for those examples demonstrate the need to enlarge the bifurcation theory for 

smooth systems to the greater class of Filippov systems. 

XC 

XC I 
kf C f 

~ ,/ / /’ 

Figure 2. Trilinear system. 

2. TRILI~~AR SPRING SYSTEM 

In this section, we will treat a discontinuous fold bifurcation arising in a trilinear spring system 

(Figure 2). 

The forced oscillation of a damped mass on a spring with cubic term leads to the Duffing 

equation [1,2,35,36]. The Duffing equation is the classical example where the backbone curve of 

the harmonic peak is bent and two folds (also called turning point bifurcations) are born. In 

our example, we will consider a similar mass-spring-damper system, where the cubic spring is 

replaced by a trilinear spring. Additionally, trilinear damping is added to the model. The trilinear 

damping will turn out to be essential for the existence of a ~~~~0~~~~~~~s fold bifurcation. 

The model is very similar to the model of Natsiavas [37,38], but the transitions from contact 

with the support to no contact are different from those in the model of Natsiavas. The model 

of Natsiavas switches as the position of the mass passes the contact distance (in both transition 

directions). In our model, contact is made when the position of the mass passes the contact 

distance (for growing ]z]), and contact is lost when the contact force becomes zero. 

We consider the system depicted in Figure 2. The model has two supports on equal contact 

distances x,. The supports are first-order systems which relax to their original state if there is 

no contact with the mass. If we assume that the relaxation time of the supports is much smaller 

than the time interval between two contact events, we can neglect the influence of free motion of 
the supports. It is therefore assumed that the supports are at rest at the moment that contact 

is made. This is not an essential assumption but simplifies our treatment as the system reduces 
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to a second-order equation. The second-order differential equation of this system is 

mx + C (x) + K(x) = fs sin(wt), 

where 
kx, [x,xlT E v_, 

K(x) = kx + kf(x -xc), [x,ijT E V+l, 

kx + kf(x + x,), [x:,ilT E V+z, 

is the trilinear restoring force and 

C(i) = ci, I [x,ilT E v_, 
cc + Cfk [x31T E V+, u v+2, 

is the trilinear damping force. The state space is divided into three subspaces V- 

(Figure 3). 

x2b 

\ 

v+2 

Li 

V_ 

‘XC 

C2a 

(1) 

(2) 

(3) 

V+l , and V+Z 

v+1 

2 

xlb 0 
Figure 3. Subspaces of the trilinear system. 

If the mass is in contact with the lower support, then the state is in space V+, 

V+, = [x,?JT E Et2 1 x > xc, kp(x -2,) + cfk 2 0 , 
> 

whereas if the mass is in contact with the upper support, then the state is in space V+, 

V+2= [x,k]T~!R2]x<-x,, kf(x+x2,)+cfj:<0 . 
{ > 

If the mass is not in contact with one of the supports, then the state is in space V_ defined by 

v_ = {[x, x]r E IR2 1 [x, k]’ $ (V,, u V+z)} . 
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We define the indicator functions hra(xc, ?) and hrb(x, i) as 

263 

The hypersurface Cr 

defines the transition 

hla(2, j’) = z - xc, (4 
hlb(Z, j’) = kj(x - 2,) + cji. (5) 

between V- and V+, consists of two parts Cr, and &b. The part Cr, 

from V- to V+, because contact is made when IC becomes larger than 2,. 

The part CIb is defined by the indicator equation which defines the transition 

to V_ as contact is lost when the support-force becomes zero (the support can 

pull on the mass). 

(6) 

from V+, back 

only push, not 

(7) 

Similarly, the hyper-surface .X2 between V_ and V +2 consists of two parts &a and &b defined 

by the indicator equations 

h2a(Z, k) = z + cc,, (8) 
h’Jb(x, k) = kj(x + z,) + cji. (9) 

Discontinuous systems exhibit discontinuities (or ‘saltations’/‘jumps’) in the time evolution of 

the fundamental solution matrix. The jumps occur when the trajectory crosses a hypersurface 

of discontinuity. The trajectory g(t) is continuous in time, but the right-hand side f(t, LE) is 

discontinuous on the hypersurface, which causes a jump in the fundamental solution matrix. The 

jump can be described by a saltation matrix S 

iqt,+, to) = mtp-r to), (10) 

where g(t,_, to) is the fundamental solution matrix before the jump and g(t,+, to) after the jump 

which occurs at t = t,. The saltation matrix 2 can be expressed as 

(11) 

where n is the normal to the hypersurface 

n = n (6 z(t)) = grad (h (6 z(t))) . (12) 

The construction of saltation matrices is due to Aizerman and Gantmakher [39] and treated 

in [26,40-421. The saltation matrices for each hypersurface are 

1 0 

Sr, = Cj 
[ 1 -- 1 ’ 

m 

&, = r, 

1 0 

S& = Cj 
[ 1 1 ’ -- 

m 

526 = L. 

(13) 

(14) 

(15) 

(16) 
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I 
WA ’ WB 1.5 2 

w [rad/s] 

Figure 4. Response diagram of trilinear spring system. 

1 1.5 
w [rad/s] 

Figure 5. Floquet multipliers. 

The hypersurfaces Cr and Cs are nonsmooth. The saltation matrices are not each other’s 

inverse, &, # 2;: and & # S,-d. This will turn out to be essential for the existence of a 

discontinuous bifurcation. Note that the saltation matrices are independent of the stiffness kf 
and reduce to the identity matrix if cf = 0. 

The response diagram of the trilinear system is shown in Figure 4 for varying forcing frequencies 

with the amplitude A of z on the vertical axis. Stable branches are indicated by solid lines and 
unstable branches by dashed-dotted lines. The parameter values are given in Appendix A. 

There is no contact with the support for amplitudes smaller than z, and the response curve is 

just the linear harmonic peak. For amplitudes above zCr there will be contact with the support, 

which will cause a hardening behaviour of the response curve. The backbone curve of the peak 
bends to the right like the Duffing system with a hardening spring. The amplitude becomes equal 
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to x, twice at w = WA and w = Wg, on both sides of the peak, and corners of the response curve 
can be seen at these points. The orbit touches the corners of Ci and Cz for A = x,. 

The magnitude of the Floquet multipliers is shown in Figure 5. The two Floquet multipliers 
are complex conjugate (with the same magnitude) for A < x,. The orbit touches the two 
hypersurfaces at A < xc, and the fundamental solution matrix will jump as follows from the 
saltation matrices. The eigenvalues of the fundamental solution matrix, which are known as the 
Floquet multipliers, will therefore jump (indicated by dotted lines in Figure 5). The Floquet 
multipliers are not single valued at the bifurcation point (as is the case for smooth systems), but 
are set-valued. 

The pair of Floquet multipliers jumps at WA but does not jump through the unit circle. The 
set-valued Floquet multiplier remains within the unit circle. The stable branch therefore remains 
stable. However, at w = WB the complex pair jumps to two distinct real multipliers, one with 
a magnitude bigger than one. Hence, one of those Floquet multipliers therefore jumps through 
the unit circle. This set-valued Floquet multiplier passed the unit circle through +l causing a 
discontinuous fold bifurcation. 

Damping of the support is essential for the existence of this discontinuous fold bifurcation. For 
cf = 0, all saltation matrices would be equal to the identity matrix and the corner between Ci, 
and Cib would disappear (and also between Csa and Czb). Consequently, no discontinuous bifur- 
cation could take place, and the fold bifurcation would be smooth. The model of Natsiavas [37,38] 
did not contain a discontinuous fold bifurcation because the transitions were modeled such that 
Sla = S;a and &a = 8,-d The saltation matrices will cancel out each other if they are each 
other’s inverse. A corner of hypersurfaces with saltation matrices which are not each other’s 
inverse is therefore essential (but not sufficient) for the existence of a discontinuous bifurcation. 

3. STICK-SLIP SYSTEM 

In the preceding section, we studied a discontinuous fold bifurcation, where a Floquet multiplier 
jumped through the unit circle to a finite value. In this section, we will study a discontinuous fold 
bifurcation where a Floquet multiplier jumps to infinity. This results in an infinitely unstable 
periodic solution. 

We consider the block-on-belt model depicted in Figure 6 with the parameter values given in 
Appendix B. The state equation of this autonomous system reads 

[ 

2 

%=f(:)= k F 1 __x-C~+_ 
m m m 1 

where 2 = [z &IT, and the friction force F is given by 

F(m, x) = 
-Fslip w u,,I, h,~ # 0, slip, 
min (I kx + ~2, Fstick) sgn kx, wrel = 0, stick. 

k -&EiL m 

c 

(0) 

F 

(0) 

(17) 

(18) 

Figure 6. l-DOF model with dry friction. 
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The maximum static friction force is denoted by &j& and ZJ,,I = 2 - v& is the relative velocity. 

The constitutive relation for F is the known as the sunburn model with static friction point. 

This model permits analytical solutions for c = 0 due to its simplicity, but it is not directly 

applicable in numerical analysis. The relative velocity will most likely not be exactly zero in digital 

computation. Instead, an adjoint switch model [41,43] will be studied which is discontinuous but 

yields a set of ordinary (and nonstiff!) differential equations. The state equation for the switch 

model reads 

ri: 
k _-a:-cj:_ 
m m 

Fslip m 
(19) 

A region of near-zero velocity is defined as ]v,,I] < r~ where n < ‘U&. The space R2 is divided 

in three subspaces V, W, and D as indicated in Figure 7. The small parameter n is enlarged to 

make D visible. 

i/ 

I 
i w 

I -.- 

Figure 7. Phase plane. 

The equilibrium solution of system (17) is given by 

(20) 

and is stable for positive damping (c > 0). 

The model also exhibits stable periodic stick-slip oscillations. The saltation matrix S_ for the 

transition from slip to stick is given by [41] 

s,= ; ; I 

[ 1 
(211 

which is singular. The fundamental solution matrix will therefore also be singular as the stable 

periodic oscillation passes the stick state. The saltation matrix Sa for the transition from stick 

to slip is given by 
1 0 

&= AFl, 

[ 1 -- 
nzvdr 

with AF = Fstick - Fslip. 

(22) 

The periodic solution has two Floquet multipliers, of which one is always equal to unity as 

the system is autonomous. The singularity of the fundamental solution matrix implies that the 
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remaining Floquet multiplier has to be equal to zero, independent of any system parameter. The 

Floquet multipliers of the stable periodic solution of this system are therefore 1 and 0. 

The stable limit cycle is sketched in the phase plane in Figure 7 (bold line). The equilibrium 

position is also stable and indicated by a dot. The space D is enlarged in Figure 7 to make it 

visible, but is infinitely small in theory and is taken very small in numerical calculations [41,43]. 

A trajectory outside the stable limit cycle, like Trajectory I in Figure 7, will spiral inwards 

to the stable limit cycle and reach the stick-phase D. The stick-phase will bring the trajectory 

exactly on the stable limit cycle as it is infinitely small. Every point in L) is therefore part of the 

basin of attraction of the stable limit cycle. 

Trajectory II starts inside the stable limit cycle and spirals around the equilibrium position 

and hits D whereafter it is on the stable limit cycle. But a trajectory inside the stable limit cycle 

might also spiral around the equilibrium position and not reach the stick phase D (Trajectory III). 

It will then be attracted to the equilibrium position. 

A trajectory inside the stable limit cycle can therefore spiral outwards to the stable limit cycle, 

like Trajectory II, or inwards to the equilibrium position (Trajectory III). Consequently, there 

must exist a separating boundary of between the two attracting limit sets. This boundary is the 

unstable limit cycle sketched by a dashed line in Figure 7. Whether a trajectory is attracted to 

the stable limit cycle or to the equilibrium point depends on the attainment of the trajectory 

to D. The unstable limit cycle is therefore defined by the trajectory in V which hits the border 

of D tangentially. Another part of the unstable limit cycle is along the border of D as trajectories 

in D wilI attract to the stable limit cycle and just outside D to the equilibrium position. This 

part of the unstable limit cycle along the the border of D has a vector field which is repulsing 

on both sides of the border. The theory of Filippov gives a generalized solution of systems 

with a discontinuous right-hand side [25,26,41]. If the vector field on one side of a hypersurface 

of discontinuity is pushing to the hypersurface and on the other side from the hypersurface, 

then every trajectory will intersect the hypersurface transversally. If the vector field is pushing 

to the hypersurface on both sides, then there exists a unique solution along the hypersurface. 

This is called an attraction sliding mode. If the vector field is repulsing from both sides of the 

hypersurface, then there exists a solution along the hypersurface which is not unique. This is 

called a repulsion sliding mode. 

The trajectory on either side of the border of D is repulsing from it. It is therefore a repulsion 

sliding mode. The trajectory starting from a point on a repulsion sliding mode is not unique as 

follows from the theory of Filippov. This causes the unstable solution to be infinitely unstable. 

As the trajectory is infinitely unstable, it is not possible to calculate it in forward time. However, 

calculation of the trajectory in backward time is possible. The vector field in backward time 

is identical to the one in forward time, but opposite in direction. The repulsion sliding mode 

in forward time will turn into an attraction sliding mode in backward time. The trajectory 

starting from a point on the unstable limit cycle will move counterclockwise in the phase-plane 

in backward time and hit the border of D. It will slide along the border of D until the vector 

field in V becomes parallel to Ct, and will then bend off in V. Any trajectory starting from a 

point close to that starting point will hit D and leave D at exactly the same point. Information 

about where the trajectory came from is therefore lost through the attraction sliding mode. In 

other words, the saltation matrix of the transition from V to D during backward time is singular. 

The fundamental solution matrix will therefore be singular in backward time because it contains 

an attraction sliding mode. The Floquet multipliers of the unstable limit cycle in backward time 

are therefore 1 and 0. The Floquet multipliers in forward time must be their reciprocal values. 

The second Floquet multiplier is therefore infinity, which of course must hold for an infinitely 

unstable periodic solution. 

The bifurcation diagram of the system is shown in Figure 8 with the velocity of the belt v& 

as parameter and the amplitude A on the vertical axis. The equilibrium branch and the stable 
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stable periodic solutions 
fold ’ 

0 
0 0.2 0.4 

Figure 8. Bifurcation diagram of the block-on-belt model. 

and unstable periodic branches are depicted. The unstable branch is of course located between 

the stable periodic branch and the equilibrium branch as can be inferred from Figure 7. The 

stable and unstable periodic branches are connected through a fold bifurcation point. The second 

Floquet multiplier jumps from X = 0 to X = 00 at the bifurcation point. This set-valued Floquet 

multiplier therefore passes the unit circle at +l. The fold bifurcation is therefore a discontinuous 

fold bifurcation. The fold bifurcation occurs when v& is such that a trajectory which leaves the 

stick phase D, transverses 5’: and hits D tangentially (like the unstable periodic solution). The 

stable and unstable periodic solutions coincide at this point. Note that there exists again a corner 

of hypersurfaces at this point as was the case in the previous section. The saltation matrices 

are not each others inverse, &SD # 1, which is essential for the existence of a discontinuous 

bifurcation. 

A similar model was studied by VandeVrande et al. [20] with a very accurately smoothed 

friction curve. The stable branch was followed for increasing v&, but the fold bifurcation could 

not be rounded to proceed on the unstable branch. As the unstable branch is infinitely unstable 

in theory, it is extremely unstable for the smoothed system. The branch can therefore not be 

followed in forward time if the friction model is approximated accurately. 

The stable branch in Figure 8 was followed in forward time up to the bifurcation point. The 

path-following algorithm was stopped and restarted in backward time to follow the unstable 

branch. 

This section showed that infinitely unstable periodic solutions come into being through repul- 

sion sliding modes. Filippov’s theory turns out to be essential for the understanding of infinitely 

unstable periodic solutions. Infinitely unstable periodic solutions and their branches can be found 

through backward integration. Smoothing of a discontinuous model is not sufficient to obtain a 

complete bifurcation diagram of a discontinuous system as infinitely unstable branches cannot 

be found. 

4. SYMMETRY-BREAKING BIFURCATION; 
FORCED VIBRATION WITH DRY FRICTION 

The second type of bifurcation of a periodic solution which will be studied in this paper is the 

‘s~~~et~-breu~~ng bi~~~cut~on. Suppose a nonautonomous time-periodic system has the following 

symmetry property (also called reversion s~~~e~~): 
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where T is the period. If gi(t) = g(t) is a periodic solution of the system, then also x2(t) = 

-%P + (i12YQ must be a periodic solution. The periodic solution is called s~~~e~r~c if ~1 (t) = 

gs(t) and asymmetric if cl(t) # ‘s(t). When a Floquet multiplier crosses the unit circle 

through fl, the associated bifurcation depends on the nature of the periodic solution prior 

to the bifurcation, Suppose that the periodic solution prior to the bifurcation is a symmetric 

solution. Then, if the bifurcation breaks the symmetry of the periodic solution, it is called a 

symmetry-breaking bifurcation [35]. 

We will show in this section that symmetry-breaking bifurcations can also be discontinuous. 

Consider the forced vibration of the system depicted in Figure 9. The mass is supported by a 

spring, damper, and dry friction element. The parameter values are given in Appendix C. The 

equation of motion reads 

?7G + Ck $ kx = ffric(k, X) f fo COS Wt (24) 

with the friction model 

f # 0, slip, 

COSW~~, Fsti&) sgnfkx - fa COSW~), j: = 0, stick. 
(25) 

It can be verified that this system has the symmetry property (23). 

Figure 9. Forced vibration with dry friction. 

The bifurcation diagram of this system is depicted in Figure 10 and consists of a Branch I which 

is partly unstable (between the points A and B) and Branch II which bifurcates from Branch I. 

For large amplitudes, the influence of the dry friction element will be much less than the linear 

elements. Near the resonance frequency, w,,~ = fi = 1 [rad/s], Branch I will therefore be 

close to the harmonic resonance peak of a linear one degree-of-freedom system. We first consider 

periodic solutions on Branch I at the right side of point B. The velocity of the mass x becomes 

zero at two instances of time during one oscillation (as do linear harmonic oscillations). The 

mass does not come to a stop during an interval of time. In other words, the oscillation contains 

no stick event in which the trajectory passes the stick phase. The number of stick events on a 

part of a branch is indicated by numbers (0, 1,2) in Figure 10. The Fioquet multipliers on this 
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w [rad/s] 

Figure 10. Bifurcation diagram of forced vibration with dry friction. 

0.55 0.6 0.65 

w [rad/s] 
0.7 0.75 

Figure 11. Floquet multipliers. 

part of Branch I are complex (Figure 11). The system therefore behaves ‘almost linearly’. All 

the periodic solutions on Branch I are symmetric. 

If this part of Branch I with ‘almost linear’ symmetric solutions is followed to frequencies 

below w,,,, then bi~rcation point B is met. At bifurcation point B, the symmetric Branch I 

becomes unstable, and a second Branch II with asymmetric solutions is created. In fact, on the 

bifurcated asymmetric branch, two distinct solutions 21(t) # 9(t) exist, which have the same 
amplitude. The solutions on Branch I left of point B contain two stick events per cycle. The 

solutions on Branch II between the points B and C contain one stick event, and they contain two 

stick events between the points A and C. The existence of a stick event during the oscillation 

causes one Floquet multiplier to be equal to zero. Points B and C are points where stick events 

are created/destroyed, which cause the Floquet multipliers to be set-valued (they jump). A set- 
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valued Floquet multiplier at B passes $1. Point B is therefore a discontinuous symmetry-breaking 

bifurcation. 

Branch II encounters a jump of the Floquet multipliers at point C, but the set-valued Floquet 

multipliers remain within the unit circle. Point C is therefore not a bifurcation point, but the 

path of Branch II is nonsmooth at C due to the jump of the Floquet multipliers. 

The asymmetric branch meets the symmetric branch again at point A. The Floquet multipliers 

pass +l without a jump, and point A is therefore a continuous symmetry bifurcation. No stick 

events are created at point A because all branches have two stick events per cycle. Remark that 

the Branch I behaves smooth at bifurcation A and nonsmooth at bifurcation B. 

5. CONCLUSIONS 

It was shown in this paper that discontinuous vector fields lead to jumps in the fundamental 

solution matrix if a parameter of the system is varied. It turned out that a double intersection of a 

nonsmooth hypersurface is necessary to cause a jump of the fundamental solution matrix. These 

jumps may lead to set-valued Floquet multipliers. A discontinuous bifurcation is encountered if 

a set-valued Floquet multiplier crosses the unit circle. 

An example with a trilinear spring demonstrated two jumps of the Floquet multipliers, one 

causing a discontinuous fold bifurcation. 

An example of a stick-slip system showed that the Floquet multiplier can also jump to infinity. 

The discontinuous fold bifurcation connects a stable branch to an infinitely unstable branch. The 

unstable limit cycle can be understood by Filippov’s theory. Infinitely unstable periodic solutions 

come into being through repulsion sliding modes and can be found through backward integration. 

Branches of infinitely unstable periodic solutions can be continued with pseudoarclength contin- 

uation based on shooting with backward integration. Bifurcation to infinitely unstable periodic 

solutions lead to complete failure of the classical smoothing method to investigate discontinuous 

systems. 

A continuous and a discontinuous symmetry-breaking bifurcation were shown to exist in a 

mass-spring-damper system with dry friction. 

Different aspects of discontinuous bifurcations have been shown in this paper. Only fold and 

symmetry-breaking bifurcations were discussed. A more complete treatment of bifurcations in 

discontinuous systems is presented in [41,44]. 

APPENDIX A 

TRILINEAR SPRING SYSTEM 

m = lkg, c = 0.05 E 
m’ 

k,1N 
m’ 

zc=lm, 

kf=4E 
m’ 

Cf = 0.5 5 
m’ 

fs = 0.2 N. 

APPENDIX B 

STICK-SLIP SYSTEM 

kc12 
m’ 

c = 0.1 Ns 
m’ 

m = lkg, ‘&+ = 0...1.3!; 
S 

Fslip = 1 NT &lip = 2 NT q = 10-4 m. 
S 
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APPENDIX C 

FORCED VIBRATION WITH DRY FRICTION 

m = lkg, c = 0.01 E 
m’ 

k=l$ 
fO = 2.5N, J&p = 1 N, 
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